

Calculation Package for

QUI RESIDENCE REMODEL 8028 SE 36TH ST MERCER ISLAND, WA 98040

PROJECT #: S200831-6

DATE: 09/02/20

STRUCTURAL ENGINEER L120 ENGINEERING & DESIGN 13150 91ST PL NE KIRKLAND, WA 98034 CONTACT: MANS THURFJELL, PE PHONE: 425-636-3313 EMAIL: MTHURFJELL@L120ENGINEERING.COM

Project Number:	Plan Name:	Sheet Number:
S200831-6	Qui Residence Remodel	DC
Engineer:	Specifics:	Date:
XXX	Design Criteria	9/2/2020
	8	, ,

BLUE = Review and update as required - Typical Input

ROOF SYSTEM					
Live Load:		C			
Snow	25.0	psf			
Dead Load:					
Composite Roofing	2.0	psf			
19/32" Plywood Sheathing	2.5	psf			
Trusses at 24" o.c.	3.0	psf			
Insulation	1.8	psf			
(2) Layers 5/8" GWB	4.4	psf			
Misc or Tile Roof	1.3	psf			
Total	15.0	psf			

Gravity Criteria:

EXTERIOR WALL SYSTEM				
2x6 at 16" o.c.	1.7	psf		
Insulation	1.0	psf		
1/2" Plywood Sheathing	1.5	psf		
(2) layers 5/8" GWB	4.4	psf		
Misc or Brick Covered Wall	3.4	psf		
Total	12.0	psf		

tal	12.0	psf	
all _	3.4	psf	
/B	4.4	psf	(2) Layers 5
ng	1.5	psf	
on	1.0	psf	2x4 a
.C.	1.7	psf	

FLOOK SYSTEM					
Live Load:					
	Residential	40.0	psf		
Dead Load:					
	Flooring	3.0	psf		
3/4" T &	z G Plywood	2.5	psf		
Floor Jois	ts at 16" o.c.	2.5	psf		
	Insulation	0.5	psf		
(1) Layer	rs 5/8" GWB	2.2	psf		
Misc or 7	File Flooring	1.3	psf		
	Total	12.0	psf		

FI OOD SVSTEM

INTERIOR WALL SYSTEM						
2x4 at 16" o.c.	1.1	psf				
Insulation	0.5	psf				
(2) Layers 5/8" GWB	4.4	psf				
Misc	2.0	psf				
Total	8.0	psf				

SEISMIC PARAMETERS:

Code Reference: ASCE 7-10 R = Bearing Wall System, Wood Structural Panel Walls 6.5 Mapped Spectral Acceleration, Ss = 1.406Mapped Spectral Acceleration, S1 = 0.535 Soil Site Class = D

WIND PARAMETERS:

Code Reference: ASCE 7-10 mph Basic Wind Speed (3 second Gust) = 110 Exposure : B Kzt = **1.40**

SOIL PARAMETERS:

Soil Bearing Pressure = 1,500 psf competent native soil or structural fill 1/3 increase for short-term wind or seismic loading is acceptable Frost Depth =18 in

Lateral Wall Pressures:

Unrestrained Active Pressure = Restrained Active Pressure =		1	Cantilevered walls Plate Wall Design/Tank Walls
Passive Pressure = Soil Friction Coeff. =	350	pcf	

Code: IBC 2015

FRAMING CALCULATIONS

BEAM REFERENCE PER PLAN

Roof, GT-1 (RXN ONLY) 3 piece(s) 1 3/4" x 11 7/8" 1.55E TimberStrand® LSL

Support 1 failed reaction check due to insufficient bearing capacity.

Support 2 failed reaction check due to insufficient bearing capacity

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6305 @ 2"	4784 (2.25")	Failed (132%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	5670 @ 1' 3 3/8"	14817	Passed (38%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	36452 @ 11' 9 1/2"	27519	Failed (132%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	1.934 @ 11' 9 1/2"	0.581	Failed (L/144)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	3.210 @ 11' 9 1/2"	1.163	Failed (L/87)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	2.97"	2527	3832	6359	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	2.97"	2527	3832	6359	1 1/4" Rim Board
Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.							

арри ectly ab e it, bypassing esig

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	6" o/c			
Bottom Edge (Lu)	23' 5" o/c			
Martine all second a based as a second and and				

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	1 1/4" to 23' 5 3/4"	N/A	19.5		
1 - Uniform (PSF)	0 to 23' 7" (Front)	13'	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Roof, RJ-1 1 piece(s) 2 x 10 Hem-Fir No. 2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	555 @ 2 1/2"	1367 (2.25")	Passed (41%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	478 @ 1' 3/4"	1596	Passed (30%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1868 @ 7' 1/2"	2204	Passed (85%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.305 @ 7' 1/2"	0.342	Passed (L/537)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.488 @ 7' 1/2"	0.683	Passed (L/336)		1.0 D + 1.0 S (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	211	352	563	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	211	352	563	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	4' 2" o/c						
Bottom Edge (Lu)	13' 11" o/c						
Maximum allowable bracing intervale based on applied load							

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 14' 1"	24"	15.0	25.0	roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kiones@l120engineering.com	

Roof, RH-1 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	853 @ 0	3281 (1.50")	Passed (26%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	547 @ 7"	2657	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	693 @ 1' 7 1/2"	1979	Passed (35%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.011 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.017 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports		
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	325	528	853	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	325	528	853	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	4.9		
1 - Uniform (PSF)	0 to 3' 3"	13'	15.0	25.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136 kjones@1120engineering.com	

Roof, RH-2 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	515 @ 0	3281 (1.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	442 @ 7"	2657	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1062 @ 4' 1 1/2"	1979	Passed (54%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.101 @ 4' 1 1/2"	0.275	Passed (L/983)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.168 @ 4' 1 1/2"	0.313	Passed (L/591)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/5/16").

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	206	309	515	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	206	309	515	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 3" o/c	
Bottom Edge (Lu)	8' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	4.9		
1 - Uniform (PSF)	0 to 8' 3"	3'	15.0	25.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136 kjones@1120engineering.com	

Roof, RH-3 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	515 @ 0	3281 (1.50")	Passed (16%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	442 @ 7"	2657	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1062 @ 4' 1 1/2"	1979	Passed (54%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.101 @ 4' 1 1/2"	0.275	Passed (L/983)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.168 @ 4' 1 1/2"	0.313	Passed (L/591)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/5/16").

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	206	309	515	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	206	309	515	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 3" o/c	
Bottom Edge (Lu)	8' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	4.9		
1 - Uniform (PSF)	0 to 8' 3"	3'	15.0	25.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136 kjones@I120engineering.com	

Roof, RH-4 1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2236 @ 2"	8181 (3.50")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1896 @ 11"	8381	Passed (23%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	6386 @ 6' 1/2"	11859	Passed (54%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.277 @ 6' 1/2"	0.392	Passed (L/509)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.456 @ 6' 1/2"	0.587	Passed (L/309)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	876	1359	2235	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	876	1359		Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	12' 1" o/c					
Bottom Edge (Lu)	12' 1" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 1"	N/A	10.0		
1 - Uniform (PSF)	0 to 12' 1" (Front)	9'	15.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Kenny Jones L120 Engineering (817) 727-2136 Kjones@1120engineering.com Job Notes

9/2/2020 7:13:45 PM UTC ForteWEB v3.0, Engine: V8.1.3.1, Data: V8.0.0.0 File Name: Qui Residence Page 6 / 21

Roof, RH-4.1 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2311 @ 0	3413 (1.50")	Passed (68%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1989 @ 10 1/2"	6400	Passed (31%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	5279 @ 3'	10868	Passed (49%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.051 @ 3' 1 5/16"	0.208	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.084 @ 3' 1 5/16"	0.313	Passed (L/891)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (Ibs)			
Supports	Total	Available	Required	Dead	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	901	1410	2311	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	866	1355	2221	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	7.7		
1 - Uniform (PSF)	0 to 6' 3"	9'	15.0	25.0	Default Load
2 - Point (lb)	3'	N/A	876	1359	Linked from: RH-4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kjones@l120engineering.com

Job Notes

Second Floor, SB-1 1 piece(s) 4 x 10 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1280 @ 2"	3189 (2.25")	Passed (40%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	823 @ 1' 3/4"	3885	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1641 @ 2' 9 1/2"	4492	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.017 @ 2' 9 1/2"	0.131	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.022 @ 2' 9 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	324	1005	1329	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	324	1005	1329	1 1/4" Rim Board
 Rim Board is assumed to carry all loads applie 	d directly abo	ve it, hvnassi	na the membe	er heina desia	ined.		

ned to carry all loads applied directly above it, bypassing the member being d

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 5" o/c	
Bottom Edge (Lu)	5' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 5' 5 3/4"	N/A	8.2		
1 - Uniform (PSF)	0 to 5' 7" (Front)	9'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136 Kjones@120engineering.com	

Second Floor, SB-2 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1152 @ 2"	3189 (2.25")	Passed (36%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	735 @ 10 3/4"	3045	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1189 @ 2' 3 1/2"	2989	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.017 @ 2' 3 1/2"	0.106	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.022 @ 2' 3 1/2"	0.213	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	289	917	1206	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	289	917	1206	1 1/4" Rim Board
 Rim Board is assumed to carry all loads applie 	d directly abo	ve it hynassi	na the membe	er heina desia	ined		

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	4' 5" o/c						
Bottom Edge (Lu)	4' 5" o/c						

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 4' 5 3/4"	N/A	6.4		
1 - Uniform (PSF)	0 to 4' 7" (Front)	10'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136 kjones@I120engineering.com	

Second Floor, SJ-1 1 piece(s) 2 x 12 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	438 @ 2 1/2"	1367 (2.25")	Passed (32%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	360 @ 1' 2 3/4"	1688	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1336 @ 6' 5"	2577	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.123 @ 6' 5"	0.310	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.160 @ 6' 5"	0.621	Passed (L/930)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	103	342	445	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	103	342	445	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	9' 1" o/c					
Bottom Edge (Lu)	12' 8" o/c					
Maximum allowable bracing integrals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 10"	16"	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Not
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Second Floor, DJ-1 1 piece(s) 2 x 10 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	546 @ 2 1/2"	1367 (2.25")	Passed (40%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	454 @ 1' 3/4"	1388	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1496 @ 5' 9 1/2"	1917	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.218 @ 5' 9 1/2"	0.279	Passed (L/616)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.261 @ 5' 9 1/2"	0.558	Passed (L/513)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (Ibs)			
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	93	463	556	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	93	463	556	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	5' 8" o/c					
Bottom Edge (Lu)	11' 5" o/c					
Maximum allowable bracing integrals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 11' 7"	16"	12.0	60.0	deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Not
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

9/2/2020 7:13:45 PM UTC ForteWEB v3.0, Engine: V8.1.3.1, Data: V8.0.0.0 File Name: Qui Residence Page 11 / 21

Second Floor, DB-1 2 piece(s) 2 x 10 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	618 @ 2"	2734 (2.25")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	312 @ 1' 3/4"	2775	Passed (11%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	561 @ 2' 1/2"	3333	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.004 @ 2' 1/2"	0.094	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.006 @ 2' 1/2"	0.188	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	161	490	651	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	161	490	651	1 1/4" Rim Board
 Rim Board is assumed to carry all loads applie 	d directly abo	ove it, hypassi	na the membe	er beina desia	ined.		

ned to carry all loads applied directly above it, bypassing the member being desi

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	3' 11" o/c				
Bottom Edge (Lu)	3' 11" o/c				

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 3' 11 3/4"	N/A	7.0		
1 - Uniform (PSF)	0 to 4' 1" (Front)	6'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB	Software Operator	Job Notes
Kenny Jone L120 Engin (817) 727-2 kjones@l12	eering	

Second Floor, DB-2 3 piece(s) 2 x 10 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

					-
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1478 @ 2"	4101 (2.25")	Passed (36%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1318 @ 1' 3/4"	4163	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4496 @ 5' 13/16"	5000	Passed (90%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.226 @ 6' 1 1/2"	0.306	Passed (L/649)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.310 @ 6' 1 9/16"	0.613	Passed (L/474)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - HF	3.50"	2.25"	1.50"	402	1092	1494	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	1.50"	342	908	1250	1 1/4" Rim Board
Rim Board is assumed to carry all loads applied directly above it. bypassing the member being designed.							

d to carry all loads applied directly above it, bypassing the member being d

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	10' 7" o/c				
Bottom Edge (Lu)	12' 5" o/c				

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 12' 5 3/4"	N/A	10.6		
1 - Uniform (PSF)	0 to 12' 7" (Front)	3'	12.0	40.0	Default Load
2 - Point (lb)	4' (Front)	N/A	161	490	Linked from: DB-1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136	
kjones@l120engineering.com	

Second Floor, DH-2 1 piece(s) 6 x 10 Douglas Fir-Larch No. 2

17 of 112 PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1832 @ 2"	8181 (3.50")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1272 @ 1' 1"	5922	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2946 @ 3' 6 1/2"	6032	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.038 @ 3' 6 1/2"	0.225	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.047 @ 3' 6 1/2"	0.338	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	344	1488	1832	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	344	1488	1832	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 1" o/c	
Bottom Edge (Lu)	7' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 7' 1"	N/A	13.2		
1 - Uniform (PSF)	0 to 7' 1" (Front)	7'	12.0	60.0	DECK

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136 kjones@I120engineering.com	

Second Floor, DH-3 1 piece(s) 6 x 10 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2419 @ 2"	8181 (3.50")	Passed (30%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1973 @ 1' 1"	6810	Passed (29%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	5545 @ 3' 6"	6937	Passed (80%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.051 @ 3' 6 7/16"	0.225	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.079 @ 3' 6 7/16"	0.338	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			L	oads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	788	1488	688	2964	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	777	1488	671	2936	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 1" o/c	
Bottom Edge (Lu)	7' 1" o/c	
Bottom Edge (Lu)		

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 7' 1"	N/A	13.2			
1 - Uniform (PSF)	0 to 7' 1" (Front)	7'	12.0	60.0	-	DECK
2 - Point (lb)	3' 6" (Front)	N/A	876	-	1359	Linked from: RH-4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136	
kjones@l120engineering.com	

Second Floor, DH-4 1 piece(s) 5 1/2" x 9 1/2" 24F-V4 DF Glulam

Overall Length: 10' 7"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2734 @ 2"	8181 (3.50")	Passed (33%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2174 @ 1' 1"	9231	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	6786 @ 5' 3 1/2"	16546	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.147 @ 5' 3 1/2"	0.342	Passed (L/834)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.181 @ 5' 3 1/2"	0.512	Passed (L/678)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

19 of 112

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 10' 3".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	512	2223	2735	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	512	2223	2735	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	10' 7" o/c					
Bottom Edge (Lu) 10' 7" o/c						
Maximum allowable bracing intervals based on applied load						

kimum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 10' 7"	N/A	12.7		
1 - Uniform (PSF)	0 to 10' 7" (Front)	7'	12.0	60.0	DECK

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator
Kenny Jones
L120 Engineering
(817) 727-2136
kiones@l120engineering.com

Job Notes

Second Floor, SH-1 1 piece(s) 4 x 8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1288 @ 0	3281 (1.50")	Passed (39%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	947 @ 8 3/4"	3045	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1771 @ 2' 9"	2989	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.028 @ 2' 9"	0.183	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.054 @ 2' 9"	0.275	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	628	660	138	1426	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	628	660	138	1426	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 6" o/c	
Bottom Edge (Lu)	5' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 6"	N/A	6.4			
1 - Uniform (PSF)	0 to 5' 6"	6'	12.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 5' 6"	2'	15.0	-	25.0	Default Load
3 - Uniform (PLF)	0 to 5' 6"	N/A	120.0	-	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Second Floor, SH-2 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	759 @ 0	3281 (1.50")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	486 @ 7"	2310	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	616 @ 1' 7 1/2"	1720	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.008 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.015 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	369	390	81	840	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	369	390	81	840	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	4.9			
1 - Uniform (PSF)	0 to 3' 3"	6'	12.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 3' 3"	2'	15.0	-	25.0	Default Load
3 - Uniform (PLF)	0 to 3' 3"	N/A	120.0	-	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Second Floor, SH-3 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1189 @ 0	3281 (1.50")	Passed (36%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	762 @ 7"	2657	Passed (29%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	966 @ 1' 7 1/2"	1979	Passed (49%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.012 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	Defl. (in) 0.024 @ 1' 7 1/2"		Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	598	260	528	1386	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	598	260	528	1386	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	4.9			
1 - Uniform (PSF)	0 to 3' 3"	4'	12.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 3' 3"	13'	15.0	-	25.0	Default Load
3 - Uniform (PLF)	0 to 3' 3"	N/A	120.0	-	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Second Floor, SH-4 1 piece(s) 4 x 6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1106 @ 0	3281 (1.50")	Passed (34%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	709 @ 7"	2310	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	899 @ 1' 7 1/2"	1720	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.017 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.022 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	261	845	1106	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	261	845	1106	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	4.9		
1 - Uniform (PSF)	0 to 3' 3"	13'	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136 kjones@I120engineering.com	

Second Floor, SH-5 1 piece(s) 4 x 10 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2513 @ 0	3281 (1.50")	Passed (77%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1793 @ 10 3/4"	3885	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3927 @ 3' 1 1/2"	4492	Passed (87%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.059 @ 3' 1 1/2"	0.208	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.075 @ 3' 1 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads t	o Supports (
Supports	Total	Available	Required	Dead	Floor Live	Total	Accessories
1 - Trimmer - HF	1.50"	1.50"	1.50"	513	2000	2513	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	513	2000	2513	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF) 0 to 6' 3"		N/A	8.2		
1 - Uniform (PSF)	0 to 6' 3"	7'	12.0	40.0	FLOOR
2 - Uniform (PSF)	0 to 6' 3"	6'	12.0	60.0	DECK

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Kenny Jones L120 Engineering (817) 727-2136 kjones@I120engineering.com	

FOUNDATION CALCULATIONS

FOOTING REFERENCE PER PLAN

Project: Metrostructure - Gravity

Location: 16" Cont FTG - Max

FOOTING PROPERTIES

Longitudinal Direction: **Reinforcement Calculations:**

Controlling Reinforcing Steel:

Reinforcement Area Provided:

Selected Reinforcement:

Footing

[2015 International Building Code(2015 NDS)]

Footing Size: 16.0 IN Wide x 8.0 IN Deep Continuous Footing With 8.0 IN Thick x 18.0 IN Tall Stemwall

....

LongitudinalReinforcement: (2) Continuous #4 Bars

TransverseReinforcement: #4 Bars @ 12.00 IN. O.C. (unnecessary) Section Footing Design Adequate

Allowable Soil Bearing Pressure: Qs = 1500	psf		
Concrete Compressive Strength: F'c = 2500			
Reinforcing Steel Yield Strength: Fy = 40000	psi		
	in		
FOOTING SIZE			
	6 in		
	8 in		
	5 in		
	• • • •		
STEMWALL SIZE			
Stemwall Width: 8 in			
Stemwall Height: 18 in			
Stemwall Weight: 150 pcf			
FOOTING CALCULATIONS			
Bearing Calculations:	_		_
Ultimate Bearing Pressure:	Qu =	1388	
Effective Allowable Soil Bearing Pressure:	Qe =	1400	
Width Required:	Wreq =	1.32	ft
Beam Shear Calculations (One Way Shear):			
Beam Shear:	Vu1 =	-	lb
Allowable Beam Shear:	Vc1 =	3825	b
Transverse Direction:			
Bending Calculations:			
Factored Moment:	Mu =	1310	
Nominal Moment Strength:	Mn =	0	in-lb
Reinforcement Calculations:			
Concrete Compressive Block Depth:	a =	0.30	
Steel Required Based on Moment:	As(1) =		
Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.	, , ,		
Controlling Reinforcing Steel:	As-reqd =		
	is: #4's @ 12		
Reinforcement Area Provided:	As =	0.19	in2
Development Length Calculations:			
Development Length Required:	Ld =	15	
Development Length Supplied:	Ld-sup =	1	in

Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4): As(2) =

0.26 in2

0.39 in2

As-reqd = 0.26 in2

Longitudinal: (2) Cont. #4 Bars As =

StruCalc Version 10.0.1.6

page

4/20/2020 7:37:31 PM

General Footing

Lic. # : KW-06011993

DESCRIPTIO 30x30x10

Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10 Load Combinations Used : ASCE 7-10

General Information

Material Properties			
f'c : Concrete 28 day strength	=	3	3.0 ksi
fy : Rebar Yield	=	60).0 ksi
Ec : Concrete Elastic Modulus	=	3,155.	
Concrete Density	=	145	5.0 pcf
$_{\Phi}$ Values Flexure	=	0.	90
Shear	=	0.7	50
Analysis Settings			
Min Steel % Bending Reinf.		=	
Min Allow % Temp Reinf.		=	0.00180
Min. Overturning Safety Factor		=	1.0:
Min. Sliding Safety Factor		=	1.0:
Add Ftg Wt for Soil Pressure		:	No
Use ftg wt for stability, moments &	shears	:	Yes
Add Pedestal Wt for Soil Pressure	Э	:	No
Use Pedestal wt for stability, morr	n & shea	r :	No

Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.27 . Licensee : L120 Engineering and Design, KW-06011993

	Soil Design Values Allowable Soil Beari Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = =	1.50 ksf No 250.0 pcf 0.30
1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	1.0 ft ksf ft
1	Increases based on footing plan dimen Allowable pressure increase per foot of		
	when max. length or width is greater that	=	ksf
	when max, length of which is greater the	=	ft

Dimensions

Width parallel to X-X Axis	=	2.50 ft
Length parallel to Z-Z Axis	=	2.50 ft
Footing Thickness	=	10.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	3.0 4
Bars parallel to Z-Z Axis Number of Bars Reinforcing Bar Size Bandwidth Distribution Direction Requiring Close		# 15.4.4	3.0 4 4.2)
# Bars required within zo # Bars required on each			n/a n/a n/a

Applied Loads

		D	Lr	L	S	w	E	Н
P : Column Load OB : Overburden	=	5.0		4.20				k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

General Footing Lic. # : KW-06011993

DESCRIPTIO 30x30x10

DESIGN SUMMARY

D	ESIGN	SUMMARY				Design OK
		Min. Ratio	Item	Applied	Capacity	Governing Load Combination
_	PASS	0.9953	Soil Bearing	1.493 ksf	1.50 ksf	+D+L+H about Z-Z axis
	PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
	PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
	PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
	PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
	PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
	PASS	0.2176	Z Flexure (+X)	1.590 k-ft/ft	7.306 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
	PASS	0.2176	Z Flexure (-X)	1.590 k-ft/ft	7.306 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
	PASS	0.2176	X Flexure (+Z)	1.590 k-ft/ft	7.306 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
	PASS	0.2176	X Flexure (-Z)	1.590 k-ft/ft	7.306 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
	PASS	0.1991	1-way Shear (+X)	16.354 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
	PASS	0.1991	1-way Shear (-X)	16.354 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
	PASS	0.1991	1-way Shear (+Z)	16.354 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
	PASS	0.1991	1-way Shear (-Z)	16.354 psi	82.158 psi	+1.20D+0.50Lr+1.60L+1.60H
	PASS	0.3722	2-way Punching	61.160 psi	164.317 psi	+1.20D+0.50Lr+1.60L+1.60H
De	etailed	Results				

Soil Bearing

Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	tress @ L	ocation	Actual / Allow
	Gross Allowable	(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, +D+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+L+H	1.50	n/a	0.0	1.493	1.493	n/a	n/a	0.995
X-X, +D+Lr+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+S+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+0.750Lr+0.750L+H	1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +D+0.750L+0.750S+H	1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +D+0.60W+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+0.70E+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+0.750Lr+0.750L+0.45	0V 1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +D+0.750L+0.750S+0.450	DW 1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +D+0.750L+0.750S+0.52	50E 1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +0.60D+0.60W+0.60H	1.50	n/a	0.0	0.4925	0.4925	n/a	n/a	0.328
X-X, +0.60D+0.70E+0.60H	1.50	n/a	0.0	0.4925	0.4925	n/a	n/a	0.328
Z-Z, +D+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+L+H	1.50	0.0	n/a	n/a	n/a	1.493	1.493	0.995
Z-Z, +D+Lr+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+S+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+0.750Lr+0.750L+H	1.50	0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +D+0.750L+0.750S+H	1.50	0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +D+0.60W+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+0.70E+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+0.750Lr+0.750L+0.45		0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +D+0.750L+0.750S+0.450		0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +D+0.750L+0.750S+0.525		0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +0.60D+0.60W+0.60H	1.50	0.0	n/a	n/a	n/a	0.4925	0.4925	0.328
Z-Z, +0.60D+0.70E+0.60H	1.50	0.0	n/a	n/a	n/a	0.4925	0.4925	0.328
Overturning Stability								
Rotation Axis &	-							• • •
Load Combination	Ove	rturning	g Momen	t R	esisting Mom	ent Stat	oility Ratio	Status
Footing Has NO Overturning								
Sliding Stability								All units k
Force Application Axis Load Combination		Sliding	Force		Resisting Ford	ce Stal	oility Ratio	Status
Footing Has NO Sliding								

Footing Has NO Sliding

General Footing

Lic. # : KW-06011993

DESCRIPTIO 30x30x10

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft		Status
X-X. +1.40D+1.60H	0.8750	+Z	Bottom	0.2160	Min Temp %	0.240	7.30	6	ОК
X-X, +1.40D+1.60H	0.8750	-Z	Bottom	0.2160	Min Temp %	0.240	7.30		ÖK
X-X, +1.20D+0.50Lr+1.60L+1.60F		+Z	Bottom	0.2160	Min Temp %	0.240	7.30		ÖK
X-X, +1.20D+0.50Lr+1.60L+1.60L	1.590	-Z	Bottom	0.2160	Min Temp %	0.240	7.30		ŎK
X-X, +1.20D+1.60L+0.50S+1.60H		+Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+1.60L+0.50S+1.60H	1.590	-Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+1.60Lr+0.50L+1.60H	1.013	+Z	Bottom	0.2160	Min Temp %	0.240	7.30	6	OK
X-X, +1.20D+1.60Lr+0.50L+1.60H	1.013	-Z	Bottom	0.2160	Min Temp %	0.240	7.30	6	OK
X-X, +1.20D+1.60Lr+0.50W+1.60	0.750	+Z	Bottom	0.2160	Min Temp %	0.240	7.30	6	OK
X-X, +1.20D+1.60Lr+0.50W+1.60	0.750	-Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+0.50L+1.60S+1.60H	1.013	+Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+0.50L+1.60S+1.60H	1.013	-Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+1.60S+0.50W+1.60I		+Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+1.60S+0.50W+1.60I		-Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+0.50Lr+0.50L+W+1.	1.013	+Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+0.50Lr+0.50L+W+1.	1.013	-Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+0.50L+0.50S+W+1.0		+Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+0.50L+0.50S+W+1.0		-Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+0.50L+0.20S+E+1.6		+Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +1.20D+0.50L+0.20S+E+1.6		- <u>Z</u>	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +0.90D+W+0.90H	0.5625	+Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +0.90D+W+0.90H	0.5625	-Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +0.90D+E+0.90H	0.5625	+Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
X-X, +0.90D+E+0.90H	0.5625	-Z	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.40D+1.60H	0.8750	-X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.40D+1.60H	0.8750	+X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+0.50Lr+1.60L+1.60F		-X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+0.50Lr+1.60L+1.60F	1.590	+X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+1.60L+0.50S+1.60H	1.590	-X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+1.60L+0.50S+1.60H	1.590	+X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+1.60Lr+0.50L+1.60F	1.013	-X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+1.60Lr+0.50L+1.60F	1.013	+X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+1.60Lr+0.50W+1.60	0.750	-X	Bottom	0.2160	Min Temp %	0.240	7.30		OK OK
Z-Z, +1.20D+1.60Lr+0.50W+1.60	0.750	+X -X	Bottom	0.2160	Min Temp %	0.240 0.240	7.30 7.30		OK
Z-Z, +1.20D+0.50L+1.60S+1.60H Z-Z, +1.20D+0.50L+1.60S+1.60H	1.013 1.013		Bottom	0.2160 0.2160	Min Temp % Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+0.30E+1.003+1.001 Z-Z, +1.20D+1.60S+0.50W+1.60F		+X -X	Bottom Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+1.60S+0.50W+1.60F Z-Z, +1.20D+1.60S+0.50W+1.60F		-^ +X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+1.00S+0.50W+1.00 Z-Z, +1.20D+0.50Lr+0.50L+W+1.	1.013	-X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+0.50Lr+0.50L+W+1.	1.013	-7 +X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+0.50L+0.50S+W+1.6		-X	Bottom	0.2160	Min Temp %	0.240	7.30		OK
Z-Z, +1.20D+0.50L+0.50S+W+1.6		+X	Bottom	0.2160	Min Temp %	0.240	7.30	-	ÖK
Z-Z, +1.20D+0.50L+0.20S+E+1.6	1.013	-X	Bottom	0.2160	Min Temp %	0.240	7.30		ÖK
Z-Z, +1.20D+0.50L+0.20S+E+1.6		+X	Bottom	0.2160	Min Temp %	0.240	7.30		ÖK
Z-Z, +0.90D+W+0.90H	0.5625	-X	Bottom	0.2160	Min Temp %	0.240	7.30		Ŏĸ
Z-Z, +0.90D+W+0.90H	0.5625	+X	Bottom	0.2160	Min Temp %	0.240	7.30		ÖK
Z-Z, +0.90D+E+0.90H	0.5625	-X	Bottom	0.2160	Min Temp %	0.240	7.30		ÖK
Z-Z, +0.90D+E+0.90H	0.5625	+X	Bottom		Min Temp %	0.240	7.30		OK
One Way Shear								-	
Load Combination Vu	@ -X	Vu @	+X Vu	@-Z Vu	ı@+Ζ Vu	ı:Max Ph	iVn Vu/F	Phi*Vn	Status
+1.40D+1.60H	9.00 ps	si	9.00 psi	9.00 psi	9.00 psi	9.00 psi	82.16 psi	0.11	ОК
+1.20D+0.50Lr+1.60L+1.60H	16.35 ps		6.35 psi	16.35 psi	16.35 psi	16.35 psi	82.16 psi	0.20	OK
+1.20D+1.60L+0.50S+1.60H	16.35 ps		6.35 psi	16.35 psi	16.35 psi	16.35 psi	82.16 psi	0.20	OK
+1.20D+1.60Lr+0.50L+1.60H	10.35 ps 10.41 ps		0.33 psi 0.41 psi	10.33 psi 10.41 psi	10.41 psi	10.41 psi	82.16 psi	0.20	OK
+1.20D+1.60Lr+0.50W+1.60H			7.71 psi	7.71 psi	7.71 psi	7.71 psi	82.16 psi	0.13	OK
+1.20D+0.50L+1.60S+1.60H	7.71 ps			10.41 psi	10.41 psi	10.41 psi	82.16 psi	0.09	
+1.20D+1.60S+0.50W+1.60H	10.41 ps		0.41 psi	7.71 psi			82.16 psi	0.13	OK
+1.20D+1.005+0.0000+1.0000	7.71 ps		7.71 psi	7.71 psi 10.41 psi	7.71 psi	7.71 psi	62.10 pSi 82.16 psi	0.09	OK

10.41 psi

10.41 psi

10.41 psi

5.79 psi

82.16 psi

82.16 psi

82.16 psi

82.16 psi

0.13

0.13

0.13

0.07

ΟΚ

ΟΚ

ΟΚ

OK

+1.20D+0.50Lr+0.50L+W+1.60H

Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.27 . Licensee : L120 Engineering and Design, KW-06011993

Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.27 . Licensee : L120 Engineering and Design, KW-06011993

DESCRIPTIO 30x30x10

One Way Shear

Load Combination Vu	@ -X Vu @ +X	Vu@-Z Vu@	2 +Z Vu:Max	Phi Vn Vu / Phi*Vn Stat	itus
+0.90D+E+0.90H Two-Way "Punching" Shear	5.79 psi 5.79	psi 5.79 psi	5.79 psi 5.79 psi	82.16 psi 0.07 All units ^k	ОК
Load Combination	Vu	Phi*Vn	Vu / Phi*Vn	Stat	tus
+1.40D+1.60H	33.66 psi	164.32psi	0.2048	O	ĸ
+1.20D+0.50Lr+1.60L+1.60H	61.16 psi	164.32psi	i 0.3722	Ō	ĸ
+1.20D+1.60L+0.50S+1.60H	61.16 psi	164.32ps	i 0.3722	OI	K
+1.20D+1.60Lr+0.50L+1.60H	38.95 psi	164.32psi	i 0.237	OI	K
+1.20D+1.60Lr+0.50W+1.60H	28.85 psi	164.32psi	i 0.1756	OI	K
+1.20D+0.50L+1.60S+1.60H	38.95 psi	164.32ps	i 0.237	OI	K
+1.20D+1.60S+0.50W+1.60H	28.85 psi	164.32ps	i 0.1756	OI	K
+1.20D+0.50Lr+0.50L+W+1.60H	38.95 psi	164.32ps	i 0.237	OI	K
+1.20D+0.50L+0.50S+W+1.60H	38.95 psi	164.32psi	i 0.237	OI	κ
+1.20D+0.50L+0.20S+E+1.60H	38.95 psi	164.32psi	i 0.237	OI	κ
+0.90D+W+0.90H	21.64 psi	164.32psi	i 0.1317	OI	K
+0.90D+E+0.90H	21.64 psi	164.32psi	i 0.1317	OI	K

LATERAL CALCULATIONS

SHEAR-WALL REFERENCE PER PLAN

85 mph

Search Information

Address:	8028 SE 36th St, Mercer Island, WA 98040, USA
Coordinates:	47.579157, -122.2310302
Elevation:	203 ft
Timestamp:	2020-09-01T23:18:04.765Z
Hazard Type:	Wind

Hazards by Location

ASCE 7-16

ASCE 7-10

ASCE 7-05

MRI 10-Year 67 mph	MRI 10-Year 72 mph	ASCE 7-05 Wind Speed
MRI 25-Year 73 mph	MRI 25-Year 79 mph	
MRI 50-Year 78 mph	MRI 50-Year 85 mph	
MRI 100-Year 83 mph	MRI 100-Year 91 mph	
Risk Category I 92 mph	Risk Category I 100 mph	
Risk Category II 97 mph	Risk Category II 110 mph	
Risk Category III 104 mph	Risk Category III-IV 115 mph	
Risk Category IV 108 mph		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the https://hazards.atcouncil.org/#/wind?lat=47.579157&lng=-122.2310302&address=8028 SE 36th St%2C Mercer Island%2C WA 98040%2C USA 1/2

ΔΤC

Search Information

Address:	8028 SE 36th St, Mercer Island, WA 98040, USA
Coordinates:	47.579157, -122.2310302
Elevation:	203 ft
Timestamp:	2020-09-01T23:18:28.127Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D

Hazards by Location

Basic Parameters

Name	Value	Description
SS	1.406	MCE _R ground motion (period=0.2s)
S ₁	0.489	MCE _R ground motion (period=1.0s)
S _{MS}	1.406	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	0.937	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1	Site amplification factor at 0.2s
F_v	* null	Site amplification factor at 1.0s
CR_S	0.902	Coefficient of risk (0.2s)
CR ₁	0.897	Coefficient of risk (1.0s)
PGA	0.602	MCE _G peak ground acceleration
F _{PGA}	1.1	Site amplification factor at PGA
PGA _M	0.662	Site modified peak ground acceleration

TL	6	Long-period transition period (s)
SsRT	1.406	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.558	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.454	Factored deterministic acceleration value (0.2s)
S1RT	0.489	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.546	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.393	Factored deterministic acceleration value (1.0s)
PGAd	1.184	Factored deterministic acceleration value (PGA)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Site Class:

Search Information

Address:	8028 SE 36th St, Mercer Island, WA 98040, USA
Coordinates:	47.579157, -122.2310302
Elevation:	203 ft
Timestamp:	2020-09-01T23:18:50.888Z
Hazard Type:	Seismic
Reference Document:	ASCE7-10
Risk Category:	П

Hazards by Location

101 203 ft 2 mond Seat 90 Kent Tacoma Puvallup Google Map data ©2020 Google

Design Horizontal Response Spectrum

MCER Horizontal Response Spectrum

D

Sa(g) 0.80 0.60 0.40 0.20 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Period (s)

Basic Parameters

Name	Value	Description
SS	1.392	MCE _R ground motion (period=0.2s)
S ₁	0.535	MCE _R ground motion (period=1.0s)
S _{MS}	1.392	Site-modified spectral acceleration value
S _{M1}	0.803	Site-modified spectral acceleration value
S _{DS}	0.928	Numeric seismic design value at 0.2s SA
S _{D1}	0.535	Numeric seismic design value at 1.0s SA

Additional Information

Name	Value	Description
SDC	D	Seismic design category
F _a	1	Site amplification factor at 0.2s
Fv	1.5	Site amplification factor at 1.0s

https://hazards.atcouncil.org/#/seismic?lat=47.579157&Ing=-122.2310302&address=8028 SE 36th St%2C Mercer Island%2C WA 98040%2C USA 1/2

36 of 112	

9/1/2020		ATC Hazards by Location
CR _S	0.959	Coefficient of risk (0.2s)
CR ₁	0.934	Coefficient of risk (1.0s)
PGA	0.574	MCE _G peak ground acceleration
F _{PGA}	1	Site amplification factor at PGA
PGA _M	0.574	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	1.392	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.451	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	2.894	Factored deterministic acceleration value (0.2s)
S1RT	0.535	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.573	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.202	Factored deterministic acceleration value (1.0s)
PGAd	1.113	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Project Number: Pla	n:		Sheet Number:
S200831-6		L1	
ngineer: Sp	ecifics:		Date
XXX		WIND FORCES	9/2/2020
BC 2015 Section 1609 \rightarrow ASCE 7-10 Section 28.6 - Simp	lified Procedure $\rightarrow M$	fain Wind-Force Resisting System	
VIND DESIGN CRITERIA:			WIND LOAD SUMMARY:
Basic Wind Speed, $V_s =$	110 mph	(ASCE 7-10, Section 26.5 page 246)	
Exposure =	в	(ASCE 7-10, Section 26.7 page 246)	Front / Back Direction
			Roof 4.27 k
BUILDING DIMENSIONS:			
Roof Slope =	6.00 :12	= 26.57 degrees	2nd Floor 3.80 k
Loads From Front/Back - Width (ft)=	23.00 ft	Roof: Gable	
Loads From Side - Width (ft) =	24.00 ft	Roof: Hip	Basement (Base Shear) 8.07 k
Average Eave Height =	16.00 ft		
Mean Roof Ht. , h =	19.00 ft	(ASCE 7-10, Figure 27.6-2 page 275)	
Edge Strip Width, a =	3 ft	(ASCE 7-10, Figure 28.6-1 page 303)	
End Zone Width, 2a =	6.00 ft	(ASCE 7-10, Figure 28.6-1 page 303)	Side / Side Direction
			Roof 2.85 k
TOPOGRAPHIC DESIGN CONSIDERATION	NS:		
Topographic Factor, Kzt =	1.40	(ASCE 7-10, Section 26.8, page 251)	2nd Floor 3.95 k
Adjustment Factor, $\lambda =$	1.00	(ASCE 7-10, Figure 28.6-1, page 305)	
			1 st Floor (Base Shear) 6.80 k

	SIMPLIFIED DESIGN WIND PRESSURE, P_{S30} (psf) (Exposure B at $h = 30$ ft.)											
Basic Wind	Roof			ZONES*								
Speed, Vs	Angle	Load Case		Horizont	al Pressure			Vertica	l Presssure		Overh	ang
(mph)	(Degrees)		Α	В	С	D	E	F	G	Н	EOH	GOH
110	26.57	А	23.32	7.31	17.34	6.44	-6.82	-14.13	-5.10	-11.57	-16.05	-14.40

* Values Interpolated from Figure 28.6-1 ASCE 7 - 10 p. 303 to 305

Project Number:	Plan:	Sheet Number:
S200831-6	Qui Residence Remodel	L1
Engineer:	Specifics:	Date
XXX	WIND FORCES	9/2/2020

IBC 2015 Section 1609 → ASCE 7-10 Section 28.6 - Simplified Procedure → Main Wind-Force Resisting System

HO	RIZONTAL $p_{s} = \lambda^* Kz$	MIN. LO	u ,			
End	zone	Inter	ior zone	D C		
A (Wall)	B (Roof)	C (Wall)	D (Roof)	Roof	Wall	
32.64	10.24	24.27	9.02	8.0	16.0	

	ASD WIND FORCES: FRONT / BACK LOADING DIRECTION									
			Height		End Zone		Interior zone		Force	Min Force
	Location	Width	Height	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	$0.6 \ \omega^* W$
		(ft)	(ft)		(ft)	(psf)	(ft)	(psf)	(kips)	(kips)
н	Height" of Roof to Plate (see note)	23.0	5.00	(roof)	6.0	32.64	17.0	24.27	2.37	0.72
ROOF	Plate to Mid 2nd LVL	23.0	4.00	(wall)	6.0	32.64	17.0	24.27	1.90	1.15
Я								$\Sigma =$	4.27	1.87
OR	Mid 2nd LVL to Floor	23.0	4.00	(wall)	6.0	32.64	17.0	24.27	1.90	1.15
FLOOR	ight" Low-Roof to Plate (see note)	0.0	0.00	(roof)	6.0	32.64	-6.0	24.27	0.00	0.00
,	Floor to Mid 1st LVL	23.0	4.00	(wall)	6.0	32.64	17.0	24.27	1.90	1.15
2nd								$\Sigma =$	3.80	2.30
						Total V	Vind Base	Shear (kips)	8.07	4.16

	ASD WIND FORCES: SIDE / SIDE LOADING DIRECTION									
		Width	Height		End Zo		Inte	rior zone	Force	Min Force
	Location	w idui	rieigin	Plane	Length	Pressure (W)	Length	Pressure (W)	0.6 ω*W	0.6 ω*W
			(ft)		(ft)	(psf)	(ft)	(psf)	kips	kips
Ŀ	Height" of Roof to Plate (see note)	24.0	5.00	(roof)	6.0	10.24	18.0	9.02	0.87	0.75
ROOF	Plate to Mid 2nd LVL	24.0	4.00	(wall)	6.0	32.64	18.0	24.27	1.97	1.20
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								$\Sigma =$	2.85	1.95
OR	Mid 2nd LVL to Floor	24.0	4.00	(wall)	6.0	32.64	18.0	24.27	1.97	1.20
FLOOR	ight" Low-Roof to Plate (see note)	0.0	0.00	(roof)	6.0	10.24	-6.0	9.02	0.00	0.00
	Floor to Mid 1st LVL	24.0	4.00	(wall)	6.0	32.64	18.0	24.27	1.97	1.20
2nd								$\Sigma =$	3.95	2.40

Total Wind Base Shear (kips)6.804.34

Project Number:	Plan Name:	Sheet Number:
S200831-6	Qui Residence Remodel	L2
Engineer:	Specifics:	Date:
XXX	SEISMIC WEIGHTS	9/2/2020

Unit Weights (psf)		
Roof:	15	psf
Floor:	12	psf
Exterior Wall:	12	psf
Interior Wall:	8	psf
Concrete Deck:	0	psf

Seismic Weights include: (REF §12.7) 25% of storage Live loads

2 psf Actual partition weight or 10 psf min if applicable

osf Operating weight of permenant equipment

20% of uniform design snow loads for areas where Pf > 30 psf

		AREA / LENGT	HEIGHT	WEIGH T		Item Total Weight.	Sub- Total	Average Pressure
LEVEL	ITEM	Η	(ft)	(psf)		(lbs)	(kips)	(psf)
ROOF								
KUUF	Roof	400	1.10	15	=	6,629		
	Ext. Wall Below	75	4.00	13	=	3,600		
	Corridor Wall Below	50	4.00	8	=	1,600		
	Connuor wan Delow	50	<b>7.00</b>	0		1,000	12	30
							14	50
2nd FLO	OR							
	Floor	350	1.00	12	=	4,200		
	Deck	0	1.00	0	=	0		
	Low Roof	0	1.10	15	=	0		
	Ext. Wall Above	75	4.00	12	=	3,600		
	Corridor Wall Above	50	4.00	8	=	1,600		
	Ext. Wall Below	75	4.00	12	=	3,600		
	Corridor Wall Below	50	4.00	8	=	1,600		
						-	15	42
1st FLOO	R							
	Ext. Wall Above	75	4.00	12	=	3,600		
	Corridor Wall Above	50	4.00	8	=	1,600		
						-	5	

STRUCTURE WEIGHT FOR SEISMIC BASE SHEAR: 26 kips

**TOTAL WEIGHT OF STRUCTURE:**32kips(Includes Basement Dead Load)

Project Number:		Plan Name:					Sheet Number:	
S200831-6			el	L3				
Engineer:		Specifics:	CEIC		DCEC		Date:	020
<b>XXX</b> Equivelant Lateral Force A	Analyzia	por IDC 201		MIC FO		61 8001	9/2/2	020
Equiverant Lateral Force	Analysis	per IBC 201	5 1015.1 -	ASCE /-	10 Table 12	$.0-1 \rightarrow Sec 1$	2.8	
Data generated by: Se	ismic Des	sign Values	<u>for Buildin</u> '	"Java Gro	ound Motio	n Parameter	r Calculation'	•
			_					
			$S_1 =$	0.489		Maps		
			$S_{DS} =$	0.937		(ASCE 7 EQ 1	11.43)	
			$S_{D1} =$	0.535		(ASCE 7 EQ 1	11.44)	
		ic Importanc		1.00		(ASCE 7 Tabl	e 11.5-1)	
		nic Design (		D			e 11.6-1 & 11.6.2	2)
	-	odification I		6.5		(ASCE 7 Tabl	e 12.2-1)	
Seismic Force-	Resisting	System Des	cription = 1	A.13 - ligh	nt framed wa	lls		
		Building H	eight, $h_n =$	21.0	ft			
В	Building Period Coefficient, C _T =					(ASCE 7 Tabl	e 12.82)	
Ap	prox. Fur	ndamental P	eriod, $T_a =$	0.196	$(C_{T*}(h_n^{0.75}))$	(ASCE 7 EQ 1	12.87)	
Ap	prox. Fur	ndamental Po	eriod, $T_L =$	6.0	sec	(ASCE 7 11.4	.5)	
-	-					×	,	
Seismic Response Coeffi	cient							
$C_s$	$= S_{DS}/(R)$	/I)	$C_s =$	0.144		(ASCE 7 EQ 1	12.82)	
Seismic Response Coeffi	cient, Ma	aximum						
		₀₁ /(T*R/I)		0.420	$T \leq T_L$	(ASCE 7 EQ 1	12.83)	
C _{s,}	$MAX = S_{D}$	$T_{\rm L} / (T^2 * R)$	$C_{s, MAX} =$	NA	$T > T_L$	(ASCE 7 EQ 1	12.84)	
Seismic Response Coeffi	cient, Mi	inimum						
C _s ,	$_{\rm MIN} = 0.0$	)1	$C_{s, MIN} =$	0.010		(ASCE 7 EQ 1	12.85)	
$C_{s,}$	$_{\rm MIN} = 0.5$	S ₁ /(R/I)	$C_{s, MIN} =$	NA	if S1 > 0.6	(ASCE 7 EQ 1	12.86)	
			~					
			$C_s =$	0.144	1.'			
			Load $W =$ T = Cs W =	26 3.8	kips kips		128 1)	
		v	$-CsW = Q_E = V =$	3.8 3.8	kips kips	(ASCE 7 EQ 1 (ASCE 7 EQ 1	<i>,</i>	
			$\varphi_{\rm E}$ , $\rho =$	1.0	ктра	(ASCE 7 EQ 1 (ASCE 7 12.3	,	
			$E_{\rm H} = \rho Q_{\rm E}$	3.8	kips	(ASCE 7 EQ 1	·	
			$2 \text{ B}_{\text{H}} = 2 \text{ S}_{\text{DS}} \text{ D} =$	0.19	x D kips	(1000 / DQ )		
Fa	ctor for $\Delta$		20		- 2015 IBC	1605 3 2		
1 4			$E_{\rm H}/1.4 =$	<b>2.7</b>	kips	IBC 2015 160	5.3.2	
			k =	1	I	(ASCE 7 12.8		
						<u> </u>		
	VERTIC	CAL DISTR	BUTION	(Per ASC	E 7 - 12.8.3	)		
	Story	Total	Story		Vert Dist	Story	Factored Story	
	-				1	1 ⁻		1

		â	<b>—</b> 1	ã		-	7	
		Story	Total	Story		Vert Dist	Story	Factored Story
	Area	Height	Height	Weight		Factor	Force	Force (ASD)
Floor	1 ii cu	H	h _x	W _x	$w_x h_x^k$	Cvx	Fx	Fx $\rho/1.4 = E_{\rm H}/1.4$
		11	щx	чх	··· X···X	CVA	ГA	1 11
	$(\mathrm{ft}^2)$	(ft)	(ft)	(kips)	(k-ft)		(kips)	(kips)
Roof	400	8.08	16.16	12	191	0.62	2.4	1.7
2nd	350	8.08	8.08	15	118	0.38	1.5	1.0
				Sum =	309	1.000	3.8	2.7

Project Number:	Plan Name:	Sheet Number:
S200831-6	Qui Residence Remodel	L4
Engineer:	Specifics:	Date:
XXX	DESIGN LOADS	9/2/2020

Wind 0.6 ω * W	Force	Seismic <i>E/1.4 (</i>			Governing Force:
Per Level 4.27	Sum	Per Level	Sum	ROOF	4.27 k Wind
3.80	4.27	1.04	1.68	2nd FLOOR	3.80 k Wind
	8.07		2.72	1st FLOOR	Base Shear:

Wind ] 0.6 ω * W		Seismic <i>E/1.4 (</i>			Governing Force:
Per Level	Sum	Per Level	Sum		0
2.85		1.68		ROOF	2.85 k Wind
	2.85		1.68		
3.95		1.04		2nd FLOOR	3.95 k Wind
	6.80		2.72		
				1st FLOOR	<b>Base Shear:</b>
		-			🚿 6.80 k Wind

							Window Strap	No strap No strap						Window Strap	No strap	No strap			
							Force at Window	0.00 0.00						Force at Window (Kips)		0.00			
							Resultant							Resultant HD	HDU8	HDUS			
		II.	oical Input				HD/Strap to HD location	Edge						HD/Strap to HD location DF or HF? Edge/Interior?	Edge	Edge			
		RED = Update Formula as required - Important	BLUE = Review and update as required - Typical Input	Direction)			HD/Strap to	H H				irection)		HD/Stap to DF or HF?	HF	ĦF			
		ala as requir	update as n	2nd Story Walls (Front - Back Direction)	dow straps		HD	firfir firfir				1st Story Walls (Front - Back Direction) Hold downs and window straps		HD	flr-conc	flr-conc			
		odate Formu	Review and	/ Walls (Fr	Hold downs and window straps		Resultant	-0.05 0.46				1st Story Walls (Front - Back I Hold downs and window straps		Resultant HD(kips)	4.66	3.33			
		RED = U _I	BLUE = 1	2nd Story	Hold dow		RM					1st Story Hold dow		RM (k-ft)		14.9			
							MTO M	u) (x-u) 17.3 17.3						(j) (k-fi)		49.9			
							Sum	0.25						Valls/DL Sum Stacks? DL(klf)		S 0.37			
							Å.	5						Story Walls/DL DL(kff) Stacks?		2 YES			
							Roof DL Story	00 0.25 00 0.25						Floor DL Sto Trib(ft) DL(	0 0.12	0 0.12			
1		shear		60.00				SW6 10.00						Wall Floor Type Trit					
	ght to width	s (increased														S			
	a minimum heig	alls w/o opening	loor framing.	Gyp capacity =	(PLF)		Design Panel	145 178			y 427	1	car	Design Panel Shear (plf)		367	sck.		y 3.80
	* All walls designed with Force-Transfer should meet a minimum height to width ratio of 2:1 at Pier (SDPWS 2015, Table 4.3.4 p.25)	* Maximum allowed height to width ratio 3.5:1 for walls w/o openings (increased shear	design values per SDPWS 2015, Table 4.3.4 p.25) * Shear panel height is height to underside or roof or floming.				Height/Width Reduction (%)				Total OSB Capacity (kine)	(adm)	cemulated Shear = 8.07 load balance check = Warning-Wall loads do not match story shear	Height/Width Reduction (%) R = 2*L/H	1.00	1.00	has been added to shearwall 2.0 from the remodeled deck		Total OSB Capacity (kips)
	ith Force-T SDPWS 201	ieight to wie	DPWS 2015 s height to u		8		Sum Panel	145 178			OK		Vall loads d	Sum Panel V(kips) Shear (plf)	524	367	urwall 2.0 fr		Warning-
	designed w :1 at Pier (5	n allowed h	thes per SI nel height is		IBC 2015 Equation 16-18	-					4.27		8.07 Waming-V	Sum V(kips)	5.77	4.03	ded to shea		0.8.0
Notes:	* All walls ratio of 2	* Maximui	design va * Shear pa		IBC 2015		Story	2.14 2.14			4.27		ed Shear = ace check =	Story V(kips)	3.63	1.90	has been ac		5.53
				HF	Wind 0.67	×	Effective To a worke	11.50			23.00	Wind	Accumulated She ar = load balance check = W	Effective Trib. Width	22.00				33.50
			020	Stud Species	3 Direction) = 3 Direction) =	(Wind or Seismic) = load balance check = OK	Percent	00/1 1.00 1.00		_	S =	or Seismic) =		Percent Sharing (%)	1.00	001	nce elements. A	_	8 1
	Sheet Number:	L5	Date: 9/2/2020		Governing Force (F/B Direction) = Dead load factor (F/B Direction) =	Shear panel capacity (Wind or Seismic) = load balance check = 4	Trib. Width	(m) 1150 1150	lements.	Not required		Shear panel capacity (Wind or Seismic) =		Trib. Width (ft)	22.00	11.50	for existing reside	Not required	
	0				Gov	Shear pan	Effective	14.75 12.00	cisting residence e		26.75	Shear pan		Effective Length (ft)	11.00	11.00	sistance to remain		22.00
		Qui Residence Remodel	Shear walls	Temporary	Shoring shear (kips) 60%	100% story shear YES	Plate to	0.00 0.00	New shearwalls to resist new remodel addition. All existing shearwall resistance to remain for existing residence elements.	Total Length GYP required in F/B direction to resist 100% lateral forces (ft) (including discounted capacity accounted for by OSB)	Total OSB wall length =	(saar)		Plate to Opening (ft)	0.00	000	New shearwalls to resist new remodel addition. All existing shearwall resistance to remain for existing residence elements. Additional shear	Total Length GYP required in F/B direction to resist 100% lateral forces (f) (including discounted capacity accounted for by OSB)	Total OSB wall length = (keet)
		Resider	Shear		4.27 8.08	8.08 23.00	Opening (max)	0.00 0.00	ting shearwall 1	F/B direction capacity accou		_	3.80 8.08 8.08 73.00	Apuragur water (14) 2200 Opening Opening Opening (max) Width (ff) Height (ff) to Edge (ff)	0.00	0.00	nodel addition	F/B direction capacity accou	
		Qui		tion)	(kips) = ht (ft) =	- <b>(1)</b> - <b>(1)</b> - <b>(1)</b>	pening Ol	0.00	on. All exist	required in discounted		(uoj	(kips) = ht (ft) = ht (ft) =	pening O ₁ tight (ft) t	0.00	0.00	sist new ret	required in discounted	
	Plan Name:		Specifics:	ick Direc	Story shear(kips) = Story height (ft) =	Shear Panel height (ft) = Total Diaphragm width (ft) =	Opening Opening	0.00	model additi	angth GYP (including		ck Direct	djusted" Story shear(kips) = Story height (ft) = Shear Panel height (ft) = Tood Diotectory width (ft) =	pening C idth (ft) He	0.00	0.00	arwalls to n	ingth GYP (including	
	Ъ		SI	2nd Story Walls (Front - Back Direction)	"Adjusted" Story shear(kips) = Story height (ff) =	Shea Total Diap	Wall O		ssist new rer	Total Le	26.75	1st Story Walls (Front - Back Direction)	"Adjusted" Story shear(kips) = Story height (ft) = Shear Panel height (ft) = Total Natastronomickh (ft) =	Wall O L(ft) W			New she.	Total Le	22.00
	nber:	S200831-6	ххх	7 Walls (F	í.		Wall		arwalls to re		S = 26.75	Walls (F.	E.	Wall Mark		2.0			S= 22.00
	Project Number:	S2(	Engineer:	2nd Story			Story	0 0	New shet			1st Story		Story	-	-			

					Window Strap	CS14	No strap No strap						Window Strap	No strap No strap			
					Force at Window (Kips)	1.79	0.0						Force at Window (Kips)	0.00			
					Resultant HD	No HD No HD	OH ON						Resultant HD	No HD HDUS			
	tant	BLUE = Review and update as required - Typical Input			HD/Strap to HD location DF or HF? Edge/Interior?	Edge	Edge						HD/Strap to HD location DF or HF? Edge/Interior?	Edge Edge			
	RED = Update Formula as required - Important	required - T	irection)	I	HD/Strap to DF or HF?	HF	1 H H				rection)		HD/Strap to DF or HF?	HF HF			
	nula as requ	d update as	2nd Story Walls (Side / Side Direction) Hold downs and window strans		TYPE	ftr-ftr e. e.	fr-fr fr-fr				1st Story W alls (Side / Side Direction) Hold downs and window straps		HD	fir-conc fir-conc			
	Jpdate Form	Review and	y Walls (Si wns and wi		Resultant HD(kips)	0.09	0.49				y Walls (Sic wns and wi		Resultant HD(kips)	-0.21 1.56			
	$\mathbf{RED} = \mathbf{L}$	BLUE	2nd Stor Hold dov		RM (k-ft)	10.3	4 4				1st Story Hold dov		RM (k-ft)	37.4 6.6			
					0TM (k-fi)		96 96 96 96						0TM (k-fi)	33.5 20.6			
					Sum DL(klf)	0.16	0.16						4DL Sum ks? DL(klf)	S 0.33 D 0.22			
					Story DL(kff)	16 16	0.16						Story Walls/DL DL(kff) Stacks? ]	0.17 YES 0.22 NO			
					Roof DL SI Trib(ft) DL		004						Floor DL SI Trib(ft) DL	0 00.01			
idth	ised shear			60.00	Wall Re Type T		SW6	residence					Wall Flo Type Ti	9 9MS	ence		
nimum height to w	/o openings (increa	framing.		Gyp capacity = ( (PLF)	Design Panel Shear (plf)		68 68	ion of the existing		2.85			Design Panel Shear (plf)	147 219	of the existing resid		3.95
Notes: * All walls designed with Force-Transfer should meet a minimum height to width ratio of 2:1 at Pier (SDPWS 2015, Table 4.3.4 p.25)	" Maximum allowed height to width ratio 3.5:1 for walls w/o openings (increased shear	design values per SDPWS 2015, Table 4.3.4 p.25) • Shear panel height is height to underside or roof or floor framing.			Height/Width Reduction (%) R = 2*LH	1.00	1.00	and B2 to resist a port		Fotal OSB Capacity (kips)		cemulated Shear = 6.80 load balance check = Warning-Wall bads do not match story shear	Height/Width Reduction (%) R = 2*L/H	1.00	s B to resist a portion o		Total OSB Capacity (kips)
a Force-Tra	ght to width	WS 2015, 7 eight to unc		×	Panel Shear (plf)	237	8 8	carwalls Bl		OK		ll loads do r	Panel Shear (plf)	147 219	n shearwall		Warning-
ssigned with at Pier (SD	allowed hei	es per SDP I height is h		uation 16-1	Sum V(kips) Sł	1.42	0.47	luded in sh		2.83 0		6.80 Varning-Wa	Sum V(kips) Sł	2.73 2.08	ı included i		4.81 W
Notes: * All walls de ratio of 2:1	Maximum	design valu Shear panel		IBC 2015 Equation 16-18	Story V(kips)	1.42	0.47	nas been inc		2.83		Shear = e check = W	Story V(kips)	1.30 0.67	ear has beer		1.97
Z  *	*	÷	HF	Wind 0.67 Wind	Effective rib. Width	12.00	3.96	Additional shear h		23.88	Wind	Accumulated Shear = load balance check = V	Effective Trib. Width	7.93 4.07	nts. Additional sh		12.00
	6	9/2/2020	Stud Species	ce (F/B Direction) = or (F/B Direction) = (Wind or Seismic) = load balance check = OK	Percent Sharing (%)	1.00	0.33	esidence elements.		S	ind or Seismic) =		Percent Sharing (%)	0.66 0.34	ing residence eleme	<u> </u>	8
Sheet Number:	L6	Date: 9/2/:		Governing Force (F/B Direction) Dead load factor (F/B Direction) Shear panel capacity (Wind or Seismic) load balance check	Trib. Width (ft)	12.00	12.00	emain for existing 1	Not Required		Shear panel capacity (Wind or Seismic)		Trib. Width (ft)	12.00 12.00	e to remain for exis	Not Required	
					Effective Length (ft)	6.00 5 25	5.25 5.25	wall resistance to	al forces (ft)	21.75	Shear		Effective Length (ft)	18.50 9.50	bearwall resistanc	al forces (ft)	= 28.00
	Qui Residence Remodel	Shear walls	Temporary Shoring shear (kips)	60% 10% story shear YES	Plate to Opening (ft)	1.08	0.00	New shearwalls to resist new remodel addition. All existing shearwall resistance to remain for existing residence elements. Additional shear/has been included in shearwalls B1 and B2 to resist a portion of the existing residence	Total Length GYP required in F/B direction to resist 100% lateral forces (f) (including discounted capacity accounted for by OSB)	Total OSB wall length = (fect)			Plate to Opening (ft)	00.0	New shearwalls to resist new remodel addition. All existing shearwall resistance to remain for existing residence demonts. Additional shear has been included in abservalls B to resist a portion of the existing residence	Total Length GYP required in F/B direction to resist 100% lateral forces (f) (including discounted capacity accounted for by OSB)	Total OSB wall length = (feet)
	i Resider	Shear		2.85 8.08 8.08 24.00	Opening Opening Opening (max) Width (ft) Height (ft) to Edge (ft)	2.00	0.0	w remodel add	n F/B direction d capacity acco			3.95 8.08 8.08	<pre>phragm width (ft) = 24.00 Opening Opening (max) Width (ft) Height (ft) to Edge (ft)</pre>	0.00	st new remodel	n F/B direction d capacity acco	
	Qui		tion)	r(kips) = ght (ft) = ght (ft) =	Dpening C eight (ft)	0.00	0.0	to resist ne	required i		ion)	r(kips) = ght (ff) = ght (ff) =	Dpening C cight (ff)	0.00	walls to resi	required i g discounter	
Plan Name:		Specifics:	2nd Story Walls (Side / Side Direction)	"Adjusted" Story shear(kips) = Story height (f) = Shear P and height (f) = Total Dian hragm width (f) =	Dpening (f) H.		0.0	· shearwalls	ingth GYP (including		1st Story Walls (Side / Side Direction)	Adjusted" Story shear(kips) = Story height (ft) = Shear Panel height (ft) =	Lotal Diaphragm width (H) = Wall Opening Opening L(ft) Width (ft) Height (ft)	0.00	New shear	angth GYP (includin)	
d	9	s	(Side / S	Adjusted": Shea Total Dian	Nall W	14.00 ¢ 35	525	New	Total Le	29.75	Side / Si	Adjusted": Shea	Lotal Diap Wall C L(ft) W	18.50 9.50		Total L	28.00
mber	S200831-6	ххх	ry Walls		Wall Mark	IV IV				S	y Walls (	ĩ	Wall Mark	A B			S
Project Number:	SZI	Engineer:	2nd Stor		Story	0 r	100				1st Story		Story				

Project		sheet number:
	Qui Residence Remodel	L7
Subject		Date
	SHEAR WALL EQUATION DIAGRAM	9/2/2020

#### SHEAR WALL WITH WINDOW BASED ON SHEAR TRANSFER:



#### FORCE TRANSFER AROUND WINDOW CALCULATION (CANTILEVER PIER METHOD)



~

 $V_h = v_{i \text{ panel}} x L_{max}$  $V_v = HD_i$ 

 $T_{h} = V_{h} (H_{w} / 2 + H_{s}) / H_{s}$ 

 $T_v =$  Is resisted by the continuous stud adjacent to the window.



Supplementary Calculations for the following:

- ~ Hold-down anchor design/calculations
- ~ Hand-rail calculations (wood/concrete)
- ~ Balloon framed stud design
- ~ Ledger Calculations/Data
- . Knee Brace





# Hold-down anchor design calculations



## SIMPSON

Strong-I

#### Anchor Designer™ Software Version 2.5.6582.0

TM
Company: L120 Engineering & Design
Engineer: MRT
Project: Hold-down Anchors
Address:
Phone:
E-mail:

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB_H} \\ \mbox{Diameter (inch): 0.625} \\ \mbox{Effective Embedment depth, $h_{ef}$ (inch): 4.000} \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{h_{min}$ (inch): 6.13} \\ \mbox{Cmin (inch): 1.38} \\ \mbox{S_{min}$ (inch): 2.50} \end{array}$ 

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0E Seismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

# 5/8" DIA Anchor

Date:

Page:

5/3/2018

1/4

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f_c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No



SEE TO ID

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5H (5/8"Ø)



IMPSON	Anchor Designer™	Company:	L120 Engineering & Design	Date:	5/3/2018			
		Engineer:	MRT	Page:	3/4			
trong-Tie	Software	Project:	Hold-down Anchors					
@	Version 2.5.6582.0	Address:						
6		Phone:						
		E-mail:						

#### **3. Resulting Anchor Forces**

S

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2925.0	0.0	0.0	0.0
Sum	2925.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 2925

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)	
27120	0.75	20340	

#### 5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

Kc	λa	f'c (psi)	h _{ef} (in)	<i>N</i> ^b (lb)				
24.0	1.00	2500	4.000	9600				
$0.75\phi N_{cb} =$	0.75 <i>ф</i> (А _{Nc} / А _{Nco}	) $\Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} \Lambda$	l _b (Sec. 17.3.1	& Eq. 17.4.2.1a	)			
$A_{Nc}$ (in ² )	$A_{Nco}$ (in ²	c _{a,min} (in)	$\Psi_{ed,N}$	Ψc,N	$\Psi_{cp,N}$	N _b (lb)	$\phi$	0.75 <i>¢Ncb</i> (lb)
		4.00	0.900	1.00	1.000	9600	0.75	3476

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\Psi_{c,P}$	Abrg (in ² )	f'c (psi)	$\phi$	0.75 <i>¢Npn</i> (lb)
1.0	2.10	2500	0.70	22029



Company:	L120 Engineering & Design Date: 5/3/2018			
Engineer:	MRT	Page:	4/4	
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (Ib)	Design Strength, øNn (lb)	Ratio	Status
Steel	2925	20340	0.14	Pass
Concrete breakout	2925	3476	0.84	Pass (Governs)
Pullout	2925	22029	0.13	Pass

#### PAB5H (5/8"Ø) with hef = 4.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, Nua (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	2925	32544	9.0 %		
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Concrete breakout	2925	6180	47.3 %	Governs	
Pullout	2925	41960	7.0 %		

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega$ 0 factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

### SIMPSON

Strong-1

### Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design Date: 1/14/201			
Engineer:	MRT	Page:	1/4	
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 0.750 Effective Embedment depth,  $h_{ef}$  (inch): 12.000 Anchor category: -Anchor ductility: Yes  $h_{min}$  (inch): 14.25  $C_{min}$  (inch): 1.63  $S_{min}$  (inch): 3.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

#### Project description: Location: Fastening description:

# 3/4" DIA Anchor

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^{*}_c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No



30**90** lb

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/4
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB6 (3/4"Ø)



IMPSON	Anchor Designer™	Company:	L120 Engineering & Design	Date:	1/14/2018		
		Engineer:	MRT	Page:	3/4		
trong-Tie	Software	Project:	Hold-down Anchors				
Version 2.5.6582.0		Address:					
•		Phone:					
		E-mail:					

#### **3. Resulting Anchor Forces**

S

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (Ib)
1	13050.0	0.0	0.0	0.0
Sum	13050.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in x-axis,  $e_{Ny}$  (incl.): 0.00 Eccentricity of resultant tension forces in y-axis,  $e_{Ny}$  (incl.): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)
19370	0.75	14528

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ² )	f'c (psi)	$\phi$	0.75 <i>øNpn</i> (lb)
1.0	3.53	2500	0.70	37107

#### 

Company:	L120 Engineering & Design Date: 1/14/201			
Engineer:	MRT	Page:	4/4	
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1 + c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}})\lambda \sqrt{f'_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$ 

<i>c</i> a1 (in)	<i>c</i> _{a2} (in)	A _{brg} (in ² )	λa	f'₀ (psi)	$\phi$	0.75 <i>¢Nsbg</i> (lb)
4.00	6.00	3.53	1.00	2500	0.75	21149

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	13050	14528	0.90	Pass (Governs)
Pullout	13050	37107	0.35	Pass
Side-face blowout	13050	21149	0.62	Pass

#### PAB6 (3/4"Ø) with hef = 12.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	13050	23244	56.1%	Governs
Concrete	Nominal Strength, N₁ (lb)	Nominal Strength, N _n (lb)	Ratio	
• • • • • • • •				
Pullout	13050	70680	18.5%	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) satisfied since steel ratio governs and the steel element is ductile.

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

### SIMPSON

Strong-1

### Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB_H} \\ \mbox{Diameter (inch): 0.875} \\ \mbox{Effective Embedment depth, } h_{ef} (inch): 12.000 \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{h_{min} (inch): 14.38} \\ \mbox{Cmin (inch): 1.75} \\ \mbox{S_{min} (inch): 3.50} \end{array}$ 

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

# 7/8" DIA Anchor

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^{*}_c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No



BDCD Ib

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB7H (7/8"Ø)



	nchor Designer™	Company:	L120 Engineering & Design	Date:	1/14/2018		
		Engineer:	MRT	Page:	3/5		
		Project:	Hold-down Anchors				
ve	ersion 2.5.6582.0	Address:					
		Phone:					
		E-mail:					

#### **3. Resulting Anchor Forces**

S

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (lb)
1	18000.0	0.0	0.0	0.0
Sum	18000.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (Ib)
55440	0.75	41580

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

$\Psi_{c,P}$	A _{brg} (in ² )	f'c (psi)	$\phi$	0.75 <i>¢N_{pn}</i> (lb)
1.0	4.07	2500	0.70	42683

#### SIMPSON Strong-Tie [®] Anchor Designer[™] Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1+c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$ 

<i>c</i> a1 (in)	<i>c</i> _{a2} (in)	A _{brg} (in ² )	λa	f'₀ (psi)	$\phi$	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	4.07	1.00	2500	0.75	22682

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	18000	41580	0.43	Pass
Pullout	18000	42683	0.42	Pass
Side-face blowout	18000	22682	0.79	Pass (Governs)

PAB7H (7/8"Ø) with hef = 12.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	18000	66528	27.1%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	18000	81300	22.1%	
Side-face blowout	18000	40324	44.6%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

SIMPSON	Anchor Designer™
Strong-Tie	Software Version 2.5.6582.0
0	

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega 0$  factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

### SIMPSON

Strong-1

### Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design Date: 1/14/201			
Engineer:	MRT	1/5		
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB_H} \\ \mbox{Diameter (inch): 1.000} \\ \mbox{Effective Embedment depth, } h_{ef} (inch): 15.000 \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{h_{min} (inch): 17.63} \\ \mbox{C_{min} (inch): 1.88} \\ \mbox{S_{min} (inch): 4.00} \end{array}$ 

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:



#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No



2000 lb

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018	
Engineer:	IRT Page: 2/5			
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB8H (1"Ø)



IMPSON		Company:	L120 Engineering & Design	Date:	1/14/2018		
	Version 2.3.0362.0	Engineer:	MRT	Page:	3/5		
		Project:	Hold-down Anchors				
e V		Address:					
		Phone:					
		E-mail:					

#### **3. Resulting Anchor Forces**

S

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (Ib)
1	22500.0	0.0	0.0	0.0
Sum	22500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (Ib)
72720	0.75	54540

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ² )	f'c (psi)	$\phi$	0.75 <i>øNpn</i> (lb)
1.0	5.15	2500	0.70	54117

SIMPSON	Anchor Designer™
Strong-Tie	Software Version 2.5.6582.0
8	

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT Pag		4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1 + c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$ 

<i>c</i> a1 (in)	Ca2 (in)	A _{brg} (in ² )	λa	f′c (psi)	$\phi$	0.75 <i>¢Nsbg</i> (lb)
4.00	6.00	5.15	1.00	2500	0.75	25540

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	22500	54540	0.41	Pass
Pullout	22500	54117	0.42	Pass
Side-face blowout	22500	25540	0.88	Pass (Governs)

PAB8H (1"Ø) with hef = 15.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	22500	87264	25.8%		
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Pullout	22500	103080	21.8%		
Side-face blowout	22500	45405	49.6%	Governs	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

SIMPSON	Anchor Designer™
Strong-Tie	Software Version 2.5.6582.0
0	

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega 0$  factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

### SIMPSON

Strong-1

### Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

 $\begin{array}{l} \mbox{Anchor type: Cast-in-place} \\ \mbox{Material: AB} \\ \mbox{Diameter (inch): 1.125} \\ \mbox{Effective Embedment depth, } h_{ef} (inch): 15.000 \\ \mbox{Anchor category: -} \\ \mbox{Anchor ductility: Yes} \\ \mbox{h_{min} (inch): 17.75} \\ \mbox{C_{min} (inch): 2.13} \\ \mbox{S_{min} (inch): 4.50} \end{array}$ 

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

#### Project description: Location: Fastening description:

# 1 1/8" DIA Anchor

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f^c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No



70**00** lb

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT Page: 2/5		
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB9 (1 1/8"Ø)



IMPSON	Anchor Designer™	Company:	L120 Engineering & Design	Date:	1/14/2018		
		Engineer:	MRT	Page:	3/5		
trong-Tie	Software	Project:	Hold-down Anchors				
Version 2.5.6582.0	Version 2.5.6582.0	Address:					
w.		Phone:					
		E-mail:					

#### 3. Resulting Anchor Forces

S

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2 + (V_{uay})^2}$ (Ib)
1	27900.0	0.0	0.0	0.0
Sum	27900.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 0

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)
44255	0.75	33191

### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{pn} = 0.75 \phi \mathcal{\Psi}_{c,P} N_p = 0.75 \phi \mathcal{\Psi}_{c,P} 8 A_{brg} f_c \; (\text{Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4})$ 

$\Psi_{c,P}$	A _{brg} (in ² )	f'c (psi)	$\phi$	0.75 <i>øNpn</i> (lb)
1.0	6.37	2500	0.70	66885

SIMPSON	Anchor Designer™
Strong-Tie	Software Version 2.5.6582.0
8	

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT Page: 4/5		
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1 + c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$ 

<i>c</i> a₁ (in)	<b>C</b> a2 (in)	A _{brg} (in ² )	λa	f′c (psi)	$\phi$	0.75 <i>øNsbg</i> (lb)
4.00	6.00	6.37	1.00	2500	0.75	28394

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	27900	33191	0.84	Pass
Pullout	27900	66885	0.42	Pass
Side-face blowout	27900	28394	0.98	Pass (Governs)

PAB9 (1 1/8"Ø) with hef = 15.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio		
Steel	27900	53106	52.5%		
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio		
Pullout	27900	127400	21.9%		
Side-face blowout	27900	50478	55.3%	Governs	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

SIMPSON	Anchor Designer™
Strong-Tie	Software Version 2.5.6582.0
0	

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega 0$  factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.

### SIMPSON

Strong-1

### Anchor Designer™ Software

Version 2.5.6582.0

Company:	L120 Engineering & Design Date: 1/14/20		
Engineer:	MRT	Page:	1/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

**General** Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Cast-in-place Material: AB Diameter (inch): 1.250 Effective Embedment depth,  $h_{ef}$  (inch): 15.000 Anchor category: -Anchor ductility: Yes  $h_{min}$  (inch): 18.00  $C_{min}$  (inch): 2.25  $S_{min}$  (inch): 5.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 0.9D + 1.0ESeismic design: Yes Anchors subjected to sustained tension: Not applicable Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied Ductility section for shear: 17.2.3.5.2 not applicable  $\Omega_0$  factor: not set Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>

Project description: Location: Fastening description:

# 1 1/4" DIA Anchor

#### Base Material

Concrete: Normal-weight Concrete thickness, h (inch): 18.00 State: Cracked Compressive strength, f_c (psi): 2500  $\Psi_{c,V}$ : 1.0 Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes Build-up grout pad: No



1000 lb

Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847.3871 www.strongtie.com



Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	2/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB10 (1 1/4"Ø)



MPSON	Anchor Designer™	Company:	L120 Engineering & Design	Date:	1/14/2018
		Engineer:	MRT	Page:	3/5
rong-Tie	Software	Project:	Hold-down Anchors		
R	Version 2.5.6582.0	Address:			
0		Phone:			
		E-mail:			

#### **3. Resulting Anchor Forces**

S

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	31500.0	0.0	0.0	0.0
Sum	31500.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 0 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00

Eccentricity of resultant tension forces in y-axis,  $e_{Ny}$  (inch): 0.00

#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

N _{sa} (lb)	$\phi$	$\phi N_{sa}$ (lb)
56200	0.75	42150

#### 6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $0.75 \phi N_{Pn} = 0.75 \phi \Psi_{c,P} N_P = 0.75 \phi \Psi_{c,P} 8 A_{brg} f_c$  (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.4)

Ψc,P	A _{brg} (in ² )	f' _c (psi)	$\phi$	0.75 <i>øNpn</i> (lb)
1.0	8.39	2500	0.70	88137

SIMPSON	Anchor Designer™
Strong-Tie	Software Version 2.5.6582.0
®	

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	4/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

### 7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

 $0.75\phi N_{sb} = 0.75\phi \{ (1+c_{a2}/c_{a1})/4 \} (160c_{a1}\sqrt{A_{brg}}) \lambda \sqrt{f_c} \text{ (Sec. 17.3.1 \& Eq. 17.4.4.1)}$ 

<i>c</i> a1 (in)	<i>c</i> _{a2} (in)	A _{brg} (in ² )	λa	f'₀ (psi)	$\phi$	0.75 <i>¢N_{sbg}</i> (lb)
4.00	6.00	8.39	1.00	2500	0.75	32594

#### 11. Results

#### 11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	31500	42150	0.75	Pass
Pullout	31500	88137	0.36	Pass
Side-face blowout	31500	32594	0.97	Pass (Governs)

#### PAB10 (1 1/4"Ø) with hef = 15.000 inch meets the selected design criteria.

#### ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, N _{ua} (lb)	1.2 x Nominal Strength, Nn (lb)	Ratio	
Steel	31500	67440	46.7%	
Concrete	Nominal Strength, Nn (lb)	Nominal Strength, Nn (lb)	Ratio	
Pullout	31500	167000	18.8%	
Pullout	31500	167880	10.0%	

ACI 318-14 Section 17.2.3.4.3(a) (i) & (ii) is not satisfied since steel ratio does not govern.

SIMPSON	Anchor Designer™
Strong-Tie	Software Version 2.5.6582.0
8	

Company:	L120 Engineering & Design	Date:	1/14/2018
Engineer:	MRT	Page:	5/5
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

#### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.

- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when ACI 318-14 Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively,  $\Omega 0$  factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.

- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied – designer to verify.

- Designer must exercise own judgement to determine if this design is suitable.



## Hand-rail Calculations



LONGITUDE       SUBJECT       GuardRail Design         ONE TWENTY°       BY       DATE       /	
End Post Anchor Bolt Design: Pv = 25  lbs Ph = 200  lbs $h1 = 46^{"}$ h2 = 5.5" e = 1.5" Anchor Moment Mx = $Pv(e) + Ph (h1 + h2/2)$ $= 25 \times 1.5 + 200x (46+5.5/2)$ = 9788 #" $My = 200\# x 4.5" = 900 \#^{"}$ Anchor Forces T = $[Pv (e) + Ph (h1+h2)] / h2 + My/1.5"$ = 2480 # Anchor Forces C = T - Ph = 2280 # Each Bolt Force T = T / 2 = 1240 # $V = Pv / 4 + Pv \times 4.5"/(4x2.85") = 16 \#$ Wood Lag Screw: 3/8" dia with 3" min. embed into DF beam. Withdrawal Wa = 305 #/" x 1.6 x 3" = 1460 # > T O.K. Shear Za = 180 # x 1.6 = 280 # O.K.	



LONGITUDE ONE TWENTY° ENGINEERING & DESIGN	PROJECT SUBJECTGuardRail BY		
	#"	Plate Thickness = $1/2^{*}$ Standoff = $1/2^{*}$ Hole O.D. = $3/g^{*}$	+ - 2" - 1 - 1
For Plate 6061-T6 Fb = = Plate Combined Stress fbx/Fb + fby/Fb = 0.83 <	21,200 psi > fb O.K.		

78 of 112

Page 1 of 1	Fastenal Product Standard	REV-00
Date: January 11, 2012	FASTENAL	LAG.HDG

Hex Lag Screws, Hot Dipped Galvanized The information below lists the required dimensional, chemical and physical characteristics of the products in this purchase order. If the order received does not meet these requirements, it may result in a supplier corrective action request, which could jeopardize your status as an approved vendor. Unless otherwise specified, all referenced consensus standards must be adhered to in their entirety.



	E	E F		G		Н		
Diameter	Body D	iameter	Width Across Flats		Width Across Corners		Height	
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
10	.199	.178	.281	.271	.323	.309	.140	.110
1/4	.260	.237	.438	.425	.505	.484	.188	.150
5/16	.324	.298	.500	.484	.577	.552	.235	.195
3/8	.388	.360	.562	.544	.650	.620	.268	.226
7/16	.452	.421	.625	.603	.722	.687	.316	.272
1/2	.515	.482	.750	.725	.866	.826	.364	.302
5/8	.642	.605	.938	.906	1.083	1.033	.444	.378
3/4	.768	.729	1.125	1.088	1.299	1.240	.524	.455
7/8	.895	.852	1.312	1.269	1.516	1.447	.604	.531
1	1.022	.976	1.500	1.450	1.732	1.653	.700	.591
1 1/8	1.149	1.098	1.688	1.631	1.949	1.859	.780	.658
1 1/4	1.277	1.223	1.875	1.812	2.165	2.066	.876	.749

Dimensions above are prior to coating

Specification Requirements:

٠	Dimensions:	ASME B18.2.1.
•	Material:	Per ASTM A307, Grade A
•	Thread requirements:	The minimum thread length must be equal to one half the nominal Screw length plus $\frac{1}{2}$ , or 6 inch, whichever is shorter. Screws too short to conform to this formula must be threaded as close to the head
•	Coating:	as possible. Hot Dip Zinc per ASTM F2329 or in accordance with Class C of ASTM A153 and Class D for 3/8" diameter and less.

			80 of 1	12
		PROJECT NO.	SHEET NO.	
				]
	PROJECT			-
LONGITUDE	SUBJECT			_
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /	_

Table 2.3.2	Frequently Used Load Duration Factors, Cp ¹								
Load Duration	Cp	Typical Design Loads							
Permanent	0.9	Dead Load							

Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

1. Load duration factors shall not apply to reference modulus of elasticity, E, reference modulus of elasticity for beam and column stability,  $E_{\rm man}$ , no to reference compression perpendicular to grain design values,  $F_{\perp}$ , based on a deformation limit.

Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives (see Reference 30), or fire retardant chemicals. The impact load duration factor shall not apply to connections.

#### 2.3.3 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors,  $C_t$ , in Table 2.3.3 for structural members that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

#### 2.3.4 Fire Retardant Treatment

The effects of fire retardant chemical treatment on strength shall be accounted for in the design. Adjusted design values, including adjusted connection design values, for lumber and structural glued laminated timber pressure-treated with fire retardant chemicals shall be obtained from the company providing the treatment and redrying service. Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with fire retardant chemicals (see Table 2.3.2).

#### 2.3.5 Format Conversion Factor, K_F (LRFD Only)

For LRFD, reference design values shall be multiplied by the format conversion factor,  $K_F$ , specified in Table 2.3.5. The format conversion factor,  $K_F$ , shall not apply for designs in accordance with ASD methods specified herein.

#### 2.3.6 Resistance Factor, $\phi$ (LRFD Only)

For LRFD, reference design values shall be multiplied by the resistance factor,  $\phi$ , specified in Table 2.3.6. The resistance factor,  $\phi$ , shall not apply for designs in accordance with ASD methods specified herein.

#### 2.3.7 Time Effect Factor, λ (LRFD Only)

For LRFD, reference design values shall be multiplied by the time effect factor,  $\lambda$ , specified in Appendix N.3.3. The time effect factor,  $\lambda$ , shall not apply for designs in accordance with ASD methods specified herein.

Table 2.3.3	Temperature Fac	ctor, Ct		
Reference Design	In-Service Moisture -		Ct	
Values	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
Ft, E, Emin	Wet or Dry	1.0	0.9	0.9
	Dry	1.0	0.8	0.7
$F_b$ , $F_v$ , $F_c$ , and $F_{c\perp}$	Wet	1.0	0.7	0.5

 Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively. DESIGN VALUES FOR STRUCTURAL MEMBERS

2

. . . .

			81 01	112
		PROJECT NO.	SHEET NO.	
			I	
	PROJECT			-
LONGITUDE	SUBJECT			_
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /	_

	ASD Only	ASD and LRFD								LRFD Only			
	Load Duration Factor ¹	Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor ³	Penetration Depth Factor ³	End Grain Factor ³	Metal Side Plate Factor ³	Diaphragm Factor ³	Toc-Nail Factor 3	H Format Conversion Factor	Resistance Factor	Time Effect Factor
	(2) S	Lat	eral I	oads	15 1	sz - 5	() 18	c a	12 SE				
Dowel-type Fasteners e.g. bolts, lag screws, wood screws, $Z = Z x$ ails, spikes, drift bolts, & drift pins)	CD	См	Ct	Cg	$\mathbf{C}_{\Delta}$	÷	$\mathbf{C}_{eg}$		$C_{di}$	Ctn	3.32	0.65	λ
Split Ring and Shear Plate $P = P x$ Connectors $Q' = Q x$	1000	C _M C _M	$C_t$ $C_t$	$C_g \\ C_g$	$\begin{array}{c} C_{\Delta} \\ C_{\Delta} \end{array}$	C _d C _d	44 11	C _{st}	12	-		0.65	
P = P xQ = Q x		С _м С _м	Ct Ct	3. <del>•</del> 3	$C_{\Delta}^{-5}$	10 10	:- :-	$C_{st}^{4}$ $C_{st}^{4}$	38 38	20 <b>-</b> 21 12 <b>-</b> 22		0.65	
Spike Grids $Z' = Z x$	CD	См	Ct	1870	$C_{\Delta}$	55	137	5.00	17	1857.0	3.32	0.65	λ

1. The load duration factor, C_D, shall not exceed 1.6 for connections (see 11.3.2).

2. The wet service factor, C_M, shall not apply to toe-nails loaded in withdrawal (see 12.5.4.1).

3. Specific information concerning geometry factors Ca, penetration depth factors Ca, end grain factors, Ceg, metal side plate factors, Ca, diaphragm factors, Ca, and toe-nail factors, Cim is provided in Chapters 12, 13, and 14.

The metal side plate factor, C_a, is only applied when rivet capacity (P_n, Q_r) controls (see Chapter 14).
 The geometry factor, C_a, is only applied when wood capacity, Q_w, controls (see Chapter 14).

#### 11.3.2 Load Duration Factor, Cp (ASD Only)

Reference design values shall be multiplied by the load duration factors,  $C_D \le 1.6$ , specified in 2.3.2 and Appendix B, except when the capacity of the connection is controlled by metal strength or strength of concrete/masonry (see 11.2.3, 11.2.4, and Appendix B.3). The impact load duration factor shall not apply to connections.

#### 11.3.3 Wet Service Factor, CM

Reference design values are for connections in wood seasoned to a moisture content of 19% or less and used under continuously dry conditions, as in most covered structures. For connections in wood that is unseasoned or partially seasoned, or when connections are exposed to wet service conditions in use, reference design values shall be multiplied by the wet service factors, C_{sp}, specified in Table 11.3.3.

#### 11.3.4 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C, in Table 11.3.4 for connections that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

~ . . . . .

			82 OF	112
		PROJECT NO.	SHEET NO.	
	PROJECT			
	FRUJECI			-
LONGITUDE	SUBJECT			_
ONE TWENTY [®] ENGINEERING & DESIGN	BY	 DATE _	/ /	_

		al design v ead penetra										
Specific Gravity,	Lag Screw Diameter, D											
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4"	
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327	
0.71	381	450	516	579	640	757	868	974	1077	1176	1273	
0.68	357	422	484	543	600	709	813	913	1009	1103	1193	
0.67	349	413	473	531	587	694	796	893	987	1078	1167	
0.58	281	332	381	428	473	559	641	719	795	869	940	
0.55	260	307	352	395	437	516	592	664	734	802	868	
0.51	232	274	314	353	390	461	528	593	656	716	775	
0.50	225	266	305	342	378	447	513	576	636	695	752	
0.49	218	258	red	332	367	434	498	559	617	674	730	
0.47	205	242	278	312	345	408	467	525	580	634	686	
0.46	199	235	269	302	334	395	453	508	562	613	664	
0.44	186	220	252	283	312	369	423	475	525	574	621	
0.43	179	212	243	273	302	357	409	459	508	554	600	
0.42	173	205	235	264	291	344	395	443	490	535	579	
0.41	167	198	226	254	281	332	381	428	473	516	559	
0.40	161	190	218	245	271	320	367	412	455	497	538	
0.39	155	183	210	236	261	308	353	397	438	479	518	
0.38	149	176	202	227	251	296	340	381	422	461	498	
0.37	143	169	194	218	241	285	326	367	405	443	479	
0.36	137	163	186	209	231	273	313	352	389	425	460	
0.35	132	156	179	200	222	262	300	337	373	407	441	
0.31	110	130	149	167	185	218	250	281	311	339	367	

2. Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, pt, into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

W = 1800 G² D (12.2-4)

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_b into the wood member. 12.2.3.5 Nails and spikes shall not be loaded in

withdrawal from end grain of wood (Ceg=0.0). 12.2.3.6 Nails, and spikes shall not be loaded in

withdrawal from end-grain of laminations in crosslaminated timber (Ceg=0.0).

#### 12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

ERS

			83 01	112
		PROJECT NO.	SHEET NO.	
	PROJECT			_
LONGITUDE	SUBJECT			_
ONE TWENTY ^O ENGINEERING & DESIGN	BY	DATE _	/ /	_

#### Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen	0.39	E=2,200,000 psi grades of MSR	0.53
Balsam Fir	0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastem Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastem Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods	0.36	Hem-Fir	
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak	0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine	0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock	0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine	0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	
Northern Species	0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	Southern Pine	
Ponderosa Pine	0.43	E=1,700,000 psi and lower grades of MSR and MEL	0.55
Red Maple	0.58	E=1,800,000 psi and higher grades of MSR and MEL	0.57
Red Oak	0.67	Spruce-Pine-Fir	
Red Pine	0.44	E=1,700,000 psi and lower grades of MSR and MEL	0.42
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain	0.37	E=2,000,000 psi and higher grades of MSR and MEL	0.50
Sitka Spruce	0.43	Spruce-Pine-Fir (South)	
Southern Pine	0.55	E=1,100,000 psi and lower grades of MSR	0.36
Sprace-Pine-Fir	0.42	E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.36	E=2,000,000 psi and higher grades of MSR	0.50
Western Cedars	0.36	Western Cedars	
Western Cedars (North)	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.47	Western Woods	12,000
Western Hemlock (North)	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Western White Pine	0.40	Contraction of the second s	3.000 (000 (000 ))
Western Woods	0.36		
White Oak	0.73		
Yellow Poplar	0.43		

1. Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

83 of 112

			84	4 of 112
		PROJECT NO.	SHEET NC	þ.
	PROJECT _	L	I	
	PROJECT _			
ONGITUDE	SUBJECT _			
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /	

#### Table 12K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections1,2,3,4

SEWC

for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for ts<1/4") or ASTM A 36 steel side plate (for t_s=1/4")

(tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D)

G SC	Side Member Thickness	Lag Screw Diameter	G=0.67	Red Oak	G=0.55 Mirrori Mania	Southern Pine	G=0.5	Douglas Fir-Larch	Z	G=0.49 Douglas Fir-Larch (N)		G=0.46 Douglas Fir(S) Hem-Fir(N) G=0.43		G=0.43 Hem-Fir		G=0.42 Spruce-Pine-Fir		(open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedans Western Woods			Northern Species
A	t,	D	Z,	Z,	Z,	Z,	z,	Z,	Z	Z1	z,	Z,	Z	Z,	Z	Z,	Z,	Z,	Z,	Z,	Z,	Z1
	in.	in.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
	0.075	1/4	170	130	160	120	150	110	150	110	150	100	140	100	140	100	130	90	130	90	130	90
	(14 gage)	5/16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	100
		3/8	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	100
	0.105	1/4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	90
	(12 gage)	5/16	230	170	210	150	200	140	200	140	190	130	190	130	190	120	180	110	170	110	170	110
		3/8	230	160	210	140	200	140	200	130	200	130	190	120	190	120	180	110	180	110	170	110
	0.120	1/4	190	150	180	130	170	120	170	120	160	120	160	110	160	110	150	100	150	100	140	100
	(11 gage)	5/16	230	170	210	150	210	140	200	140	200	140	190	130	190	130	180	120	180	120	180	110
		3/8	240	170	220	150	210	140	210	140	200	130	200	130	190	120	180	110	180	110	180	110
	0.134	1/4	200	150	180	140	180	130	170	130	170	120	160	120	160	110	150	110	150	100	150	100
	(10 gage)	5/16	240	180	220	160	210	150	210	140	200	140	200	130	200	130	190	120	180	120	180	120
		3/8	240	170	220	150	220	140	210	140	210	140	200	130	200	130	190	120	190	120	180	110
	0.179	1/4	220	170	210	150	200	150	200	140	190	140	190	130	190	130	180	120	170	120	170	120
	(7 gage)	5/16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	130
		3/8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	130
	0.239	1/4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	120
	(3 gage)	5/16	300	220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	140
		3/8	310	220	280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	140
		7/16	420	290	390	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	190
		1/2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	230
		5/8	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	320
		3/4	1110	670	1020	590	980	560	970	550	950	530	920	500	910	500	860	450	850	450	840	440
		7/8	1510	880	1390	780	1330	730	1320	710	1280	690	1250	650	1230	650	1170	590	1160	590	1140	570
		1	1940	1100	1780	960	1710	910	1700	890	1650	860	1600	820	1590	810	1500	740	1480	730	1460	710
	1/4	1/4	240	180	220	160	210	150	210	150	200	140	200	140	190	130	180	120	180	120	180	120
		5/16	310	220	280	200	270	180	270	180	260	170	250	170	250	160	230	150	230	150	230	140
		3/8	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	140
	· · · ·	7/16	480	320	440	280	420	270	420	260	410	250	390	240	390	230	370	220	360	210	360	210
		1/2	580	390	540	340	520	320	510	320	500	310	480	290	480	290	460	270	450	260	440	260
		5/8	850	530	780	470	750	440	740	440	720	420	700	400	690	400	660	370	650	360	640	350
		3/4	1200	730	1100	640	1060	600	1050	590	1020	570	990	540	980	530	930	490	920	480	900	470
		7/8	1600	930	1470	820	1410	770	1400	750	1360	720	1320	690	1310	680	1240	630	1220	620	1200	600
		1	2040	1150	1870	1000	1800	950	1780	930	1730	900	1680	850	1660	840	1570	770	1550	760	1530	740

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_{yb}, of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values chall be achieved wing the provincing of 12.3 for the ardward penetration.

shall be calculated using the provisions of 12.3 for the reduced penetration.
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.

To determine the minimum required hand-rail connections, with a pre-manufactured hand-rail system provided by others. Our scope is limited to assess the minimum connection requirements of the hand-rail system as listed below. Our assumptions are that the base-plates, welds and metal member properties of the pre-manufactured complete system are sufficient in strength to support the code prescribed design loads, for which our design have been provided to comply with.

We have analyzed and verified the minimum connection requirements, for the following conditions:

- Wall connection (sloping wall @ stair)
   Result: minimum (2) ¼" DIA x 3" SDS screws to a minimum of (1) support studs at each connection
- Base-plate connection (vertical post application, typical)
   Result: The base-plate column connection to have a minimum of (4) 3/8" x 4 ½ lag-screws into full width support member/beams below
- Wall connection (horizontal typical application)
   Result: (2) ¼" DIA x 3" SDS screws to a minimum of (2) support studs at each connection





PROJECT



ENGINEERING & DESIGN





ONGITUDE ONE TWENTY°

Jus-0

MAX

PROJECT

SUBJECT ____

BY MRT. P.G DATE 121412017 ENGINEERING & DESIGN CASE 3: HORIZONTAL ENO-PLAIZ CONNECTONS > SEE ATTACHED CALLIATIONS OF STUD CALCULATIONS.  $V = Suepe capacity (c_{+}=c_{-}=c_{-}=1.0)$   $C_{-}=0.9$ 200 265 -(2) STUDS V= C × 100165 = 1.6 × 0.9 × 100 165 9 1/4 \$ 4/2x = 144.265 (2) 1/4 0 × 3 (A6-SCREWS = 2×14,47 L6s = 288-16s 200 66s derience < 288 65

" L. MINIMUM (2) 1/4 0×3 SDS/CAGS Regict

LI2O ENGINEERING & DESIGN

CAPACITY

IN

Strong-1

### Anchor Designer™ Software

Version 2.5.6582.0

#### 1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

#### 2. Input Data & Anchor Parameters

General Design method:ACI 318-14 Units: Imperial units

#### Anchor Information:

Anchor type: Concrete screw Material: Carbon Steel Diameter (inch): 0.375 Nominal Embedment depth (inch): 3.250 Effective Embedment depth, hef (inch): 2.400 Code report: ICC-ES ESR-2713 Anchor category: 1 Anchor ductility: No h_{min} (inch): 5.00 c_{ac} (inch): 3.63 Cmin (inch): 1.75 S_{min} (inch): 3.00

#### Load and Geometry

Load factor source: ACI 318 Section 5.3 Load combination: U = 1.2(D + F) + 1.6(L) + 0.5(Lr or S or R)Seismic design: No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	1/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

Project description: Location: Fastening description:

#### **Base Material**

Concrete: Normal-weight Concrete thickness, h (inch): 6.00 State: Cracked Compressive strength, f'c (psi): 2500 Ψ_{c,V}: 1.0 Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

#### **Base Plate**

Length x Width x Thickness (inch): 6.00 x 6.00 x 0.25



816



Anchor Designer™ Software Version 2.5.6582.0

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	2/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

<Figure 2>



#### **Recommended Anchor**

Anchor Name: Titen HD® - 3/8"Ø Titen HD, hnom:3.25" (83mm) Code Report: ICC-ES ESR-2713



SIMPSO	N Anchor Designer™	С	Company:	L120 Engineering & Design	Date:	5/3/2018
		E	Ingineer:	MRT	Page:	3/5
Strong-T	ie Software	P	Project:	Hand-rail calculation	•	•
	Version 2.5.6582.0	A	ddress:			
	0	P	hone:			
		E	-mail:			
3. Resulting A	Anchor Forces					
	Anchor Forces Tension load, Nua (lb)	Shear load x V _{uax} (lb)	Х,	Shear load y, V _{uay} (lb)	Shear load co $\sqrt{(V_{uax})^2 + (V_{uay})^2}$	
	Tension load,		х,			
	Tension load, N _{ua} (lb)	V _{uax} (lb)	х,	V _{uay} (lb)	$\sqrt{(V_{uax})^2 + (V_{uay})^2}$	
Anchor 1	Tension load, N _{ua} (lb) 1250.4	V _{uax} (lb) -80.0	x,	V _{uay} (lb) 0.0	$\sqrt{(V_{uax})^2 + (V_{uay})^2}$ 80.0	
Anchor 1 2	Tension load, Nua (lb) 1250.4 1250.4	V _{uax} (lb) -80.0 -80.0	x,	V _{uay} (lb) 0.0 0.0	√(V _{uax} ) ² +(V _{uay} ) ² 80.0 80.0	

<Figure 3>

Maximum concrete compression strain (‰): 0.12 Maximum concrete compression stress (psi): 538 Resultant tension force (lb): 2501 Resultant compression force (lb): 2501 Eccentricity of resultant tension forces in x-axis,  $e'_{Nx}$  (inch): 0.00 Eccentricity of resultant tension forces in y-axis,  $e'_{Ny}$  (inch): 0.00 Eccentricity of resultant shear forces in x-axis,  $e'_{Vx}$  (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00



#### 4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	$\phi$	$\phi N_{sa}$ (lb)
10890	0.65	7079

#### 5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$\mathbf{V}_b = \mathbf{K}_c \lambda_a \mathbf{V} \mathbf{f}'_b$	chef ^{1.5} (Eq. 17.4	4.2.2a)							
<i>k</i> c	λa	f'c (psi)	hef (in)	Nb (I	b)				
17.0	1.00	2500	2.400	3160	)	_			
$\phi N_{cbg} = \phi (A_l)$	Nc / ANco) Yec, N	$\mathcal{V}_{ed,N} \mathcal{\Psi}_{c,N} \mathcal{\Psi}_{cp,N} \mathcal{N}_{b}$	(Sec. 17.3.1 &	& Eq. 17.4.2. ²	1b)				
$A_{Nc}$ (in ² )	$A_{Nco}$ (in ² )	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	$\phi$	$\phi N_{cbg}$ (lb)
72.72	51.84	2.25	1.000	0.888	1.00	1.000	3160	0.65	2557

$\phi N_{pn} = \phi \Psi_{c}$	_{c,P} λ _a N _P (f'c / 2,50	00) ⁿ (Sec.	17.3.1	, Eq. 17.4.3.1 & Co	de Report)	
			(11-)	<b>f</b> ( , , , !)		

Ψ _{c,P}	λa	N _p (lb)	ť _c (psi)	n	$\phi$	$\phi N_{pn}$ (lb
1.0	1.00	2700	2500	0.50	0.65	1755

Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	4/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

#### 8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V _{sa} (lb)	$\phi_{ ext{grout}}$	$\phi$	$\phi_{grout} \phi V_{sa}$ (lb)
4460	1.0	0.60	2676

#### 9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2) Shear narallel to edge in x-direction:

Snear para	liel to eage in	x-airection:						
$V_{by} = \min[7($	le / da) ^{0.2} √daλa√f	'c <b>C</b> a1 ^{1.5} ; 9λa√ <b>f</b> 'c <b>C</b>	a₁ ^{1.5}   (Eq. 17.5.2	.2a & Eq. 17.5.2	2.2b)			
l _e (in)	<i>d</i> ₄ (in)	λa	f'c (psi)	<i>Ca1</i> (in)	V _{by} (lb)			
2.40	0.375	1.00	2500	2.25	1049			
$\phi V_{cbgx} = \phi (2$	2)(A _{Vc} / A _{Vco} ) $\Psi_{ec,V}$	V Yed, V Yc, V Yh, V	/by (Sec. 17.3.1,	17.5.2.1(c) & Ec	ą. 17.5.2.1b)			
$A_{Vc}$ (in ² )	$A_{Vco}$ (in ² )	$\Psi_{ec,V}$	$\Psi_{ed,V}$	Ψ _{c,V}	$\Psi_{h,V}$	V _{by} (lb)	$\phi$	$\phi V_{cbgx}$ (lb)
33.33	22.78	1.000	1.000	1.000	1.000	1049	0.70	2148

#### 10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{cpg} = \phi P$	$k_{cp}N_{cbg} = \phi k_{cp}(A_N)$	с / Anco) Ѱес,N Ѱе	d,N $\Psi_{c,N}\Psi_{cp,N}N$	b (Sec. 17.3.1 8	Eq. 17.5.3.1t	<b>)</b> )				
Kcp	Anc (in ² )	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	Nb (lb)	$\phi$	$\phi V_{cpg}$ (lb)	
1.0	102.01	51.84	1.000	0.888	1.000	1.000	3160	0.70	3863	

#### 11. Results

#### Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1250	7079	0.18	Pass
Concrete breakout	2501	2557	0.98	Pass (Governs)
Pullout	1250	1755	0.71	Pass
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	80	2676	0.03	Pass
Concrete breakout y+	160	2148	0.07	Pass
Pryout	320	3863	0.08	Pass (Governs)
Interaction check Nu	a/φNn Vua/φVn	Combined Rati	o Permissible	Status
Sec. 17.61 0.9	0.00	97.8 %	1.0	Pass

3/8"Ø Titen HD, hnom:3.25" (83mm) meets the selected design criteria.



Company:	L120 Engineering & Design	Date:	5/3/2018
Engineer:	MRT	Page:	5/5
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

### 12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.

- Designer must exercise own judgement to determine if this design is suitable.

- Refer to manufacturer's product literature for hole cleaning and installation instructions.

age Project: Location: Single 2x4 stud (staircase) Multi-Loaded Multi-Span Beam [2015 International Building Code(2015 NDS)] 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Drv Use StruCalc Version 10.0.1.6 12/4/2017 4:33:33 PM Section Adequate By: 0.8% Controlling Factor: Deflection DEFLECTIONS Center LOADING DIAGRAM Live Load 0.53 IN L/181 Dead Load 0.01 in Total Load 0.54 IN L/177 Live Load Deflection Criteria: L/180 Total Load Deflection Criteria: L/120 REACTIONS <u>A</u> B 100 lb 100 lb Live Load Dead Load 4 lb 4 lb Total Load 104 lb 104 lb Bearing Length 0.17 in 0.17 in **BEAM DATA** Center Span Length 8 ft Unbraced Length-Top ft 0 8 ft Ā B Unbraced Length-Bottom 8 ft Live Load Duration Factor 1.60 Notch Depth 0.00 UNIFORM LOADS Center MATERIAL PROPERTIES Uniform Live Load 0 plf #2 - Hem-Fir Uniform Dead Load 0 plf Base Values Adjusted Beam Self Weight 1 plf Bending Stress: Fb = 850 psi Fb' = 2040 psi Total Uniform Load 1 plf Cd=1.60 CF=1.50 POINT LOADS - CENTER SPAN Shear Stress: Fv = 150 psi 240 psi Fv' =Cd=1.60 Load Number <u>One</u>

Live Load

Location

Dead Load

200 lb

0 lb

4 ft

**Controlling Moment:** 408 ft-lb

Modulus of Elasticity:

Comp.  $\perp$  to Grain:

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

E =

1300 ksi

Fc-⊥= 405 psi

E' =

Fc - ⊥' =

1300 ksi

405 psi

Controlling Shear: -104 lb

At right support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	<u>Req'd</u>	Provided
Section Modulus:	2.4 in3	3.06 in3
Area (Shear):	0.65 in2	5.25 in2
Moment of Inertia (deflection):	5.32 in4	5.36 in4
Moment:	408 ft-lb	521 ft-lb
Shear:	-104 lb	840 lb



Project: Location: Single 2x6 stud (staircase) Multi-Loaded Multi-Span Beam [2015 International Building Code(2015 NDS)] 1.5 IN x 5.5 IN x 9.0 FT #2 - Hem-Fir - Drv Use StruCalc Version 10.0.1.6 12/4/2017 4:34:53 PM Section Adequate By: 139.3% Controlling Factor: Moment DEFLECTIONS Center LOADING DIAGRAM Live Load 0.19 IN L/556 Dead Load 0.01 in 0.20 IN L/533 Total Load Live Load Deflection Criteria: L/180 Total Load Deflection Criteria: L/120 REACTIONS <u>A</u> В 100 lb 100 lb Live Load Dead Load 7 lb 7 lb Total Load 107 lb 107 lb Bearing Length 0.18 in 0.18 in **BEAM DATA** Center Span Length 9 ft Unbraced Length-Top 0 ft 9 ft Á B Unbraced Length-Bottom 9 ft Live Load Duration Factor 1.60 Notch Depth 0.00 UNIFORM LOADS Center MATERIAL PROPERTIES Uniform Live Load 0 plf #2 - Hem-Fir Uniform Dead Load 0 plf Base Values Adjusted Beam Self Weight 2 plf Bending Stress: Fb = 850 psi Fb' = 1768 psi Total Uniform Load 2 plf Cd=1.60 CF=1.30 POINT LOADS - CENTER SPAN Shear Stress: Fv = 150 psi 240 psi Fv' =Cd=1.60 Load Number <u>One</u> Live Load 200 lb Modulus of Elasticity: E = 1300 ksi E' = 1300 ksi Fc-⊥= 405 psi Dead Load 0 lb Comp.  $\perp$  to Grain: Fc - ⊥' = 405 psi

**Controlling Moment:** 466 ft-lb

4.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2 Controlling Shear: -107 lb

At right support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	Req'd	<b>Provided</b>
Section Modulus:	3.16 in3	7.56 in3
Area (Shear):	0.67 in2	8.25 in2
Moment of Inertia (deflection):	6.73 in4	20.8 in4
Moment:	466 ft-lb	1114 ft-lb
Shear:	-107 lb	1320 lb

4.5 ft

Location

95 of 112



Location: Double 2x4 stud (flat orientation connection/top) Multi-Loaded Multi-Span Beam [2015 International Building Code(2015 NDS)] (2) 1.5 IN x 3.5 IN x 8.0 FT #2 - Hem-Fir - Drv Use StruCalc Version 10.0.1.6 12/4/2017 4:38:42 PM Section Adequate By: 101.6% Controlling Factor: Deflection DEFLECTIONS Center LOADING DIAGRAM Live Load 0.26 IN L/363 0.01 in Dead Load 0.28 IN L/346 Total Load Live Load Deflection Criteria: L/180 Total Load Deflection Criteria: L/120 REACTIONS <u>A</u> B 100 lb 100 lb Live Load Dead Load 8 lb 8 lb Total Load 108 lb 108 lb 0.09 in 0.09 in Bearing Length BEAM DATA Center Span Length 8 ft Unbraced Length-Top ft 0 8 ft Ā B Unbraced Length-Bottom 8 ft Live Load Duration Factor 1.60 Notch Depth 0.00 UNIFORM LOADS Center MATERIAL PROPERTIES Uniform Live Load 0 plf #2 - Hem-Fir Uniform Dead Load 0 plf Base Values Adjusted Beam Self Weight 2 plf Bending Stress: Fb = 850 psi Fb' = 2040 psi Total Uniform Load 2 plf Cd=1.60 CF=1.50 POINT LOADS - CENTER SPAN Shear Stress: Fv = 150 psi 240 psi Fv' =Cd=1.60 Load Number <u>One</u> Live Load 200 lb Modulus of Elasticity: E = 1300 ksi E' = 1300 ksi Fc-⊥= 405 psi Dead Load 0 lb Comp.  $\perp$  to Grain: Fc - ⊥' = 405 psi Location 4 ft

**Controlling Moment:** 416 ft-lb

4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear: 108 lb

At left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:	<u>Req'd</u>	Provided
Section Modulus:	2.45 in3	6.13 in3
Area (Shear):	0.67 in2	10.5 in2
Moment of Inertia (deflection):	5.32 in4	10.72 in4
Moment:	416 ft-lb	1041 ft-lb
Shear:	108 lb	1680 lb

age



#### Project:



# **Balloon Framed stud calculations**



DEFLECTIONS

Live Load:

Dead Load:

Total Load:

**COLUMN DATA** Total Column Length:

Live Load Deflection Criteria:

HORIZONTAL REACTIONS

Unbraced Length (X-Axis) Lx:

Unbraced Length (Y-Axis) Ly:

Column End Condition-K (e):

Axial Load Duration Factor

STUD PROPERTIES #2 - Hem-Fir

Compressive Stress:

Modulus of Elasticity:

Stud Section (X-X Axis):

Stud Section (Y-Y Axis):

Slenderness Ratio:

Section Modulus (X-X Axis):

Section Modulus (Y-Y Axis):

Area:

VERTICAL REACTIONS

Location: Baloon Framed Stud Design (typical wind) - SS Column [2015 International Building Code(2015 NDS)] 1.5 IN x 5.5 IN x 17.25 FT @ 12 O.C. #2 - Hem-Fir - Dry Use Section Adequate By: 4.0%



StruCalc Version 10.0.1.6

3/24/2018 5:04:47 PM



#### Stud Calculations (Controlling Case Only):

Controlling Load Case: Axial total Load and Lateral loads (D + 0.75[L + W] Actual Compressive Stress: 85 psi Fc = Allowable Compressive Stress: Fc' =266 psi Eccentricity Moment (X-X Axis): Mx-ex = 0 ft-lb Eccentricity Moment (Y-Y Axis): My-ey = 0 ft-lb Moment Due to Lateral Loads (X-X Axis): Mx = 418 ft-lb Moment Due to Lateral Loads (Y-Y Axis): My = 0 ft-lb Bending Stress Lateral Loads Only (X-X Axis): Fbx = 664 psi Allowable Bending Stress (X-X Axis): Fbx' =2033 psi Bending Stress Lateral Loads Only (Y-Y Axis): Fby = 0 psi 2033 psi Allowable Bending Stress (Y-Y Axis): Fby' = **Combined Stress Factor:** CSF = 0.58

age

DEFLECTIONS

Live Load:

Dead Load:

Total Load:

**COLUMN DATA** Total Column Length:

Live Load Deflection Criteria:

HORIZONTAL REACTIONS

Unbraced Length (X-Axis) Lx:

Unbraced Length (Y-Axis) Ly:

Column End Condition-K (e):

Axial Load Duration Factor

STUD PROPERTIES #2 - Hem-Fir

Compressive Stress:

Modulus of Elasticity:

Stud Section (X-X Axis):

Stud Section (Y-Y Axis):

Slenderness Ratio:

Section Modulus (X-X Axis):

Section Modulus (Y-Y Axis):

Area:

Total Reaction at Top of Column:

Total Reaction at Bottom of Column:

Lateral Load Duration Factor (Wind/Seismic)

VERTICAL REACTIONS

Location: Baloon Framed Stud Design (High Wind) - SS Column [2015 International Building Code(2015 NDS)] 1.5 IN x 5.5 IN x 17.25 FT @ 8 O.C. #2 - Hem-Fir - Dry Use Section Adequate By: 6.4%



StruCalc Version 10.0.1.6

3/24/2018 5:06:57 PM



#### Stud Calculations (Controlling Case Only):

Controlling Load Case: Axial Dead Load and Lateral loads (D + W or E) Actual Compressive Stress: 27 psi Fc = Allowable Compressive Stress: Fc' =266 psi Eccentricity Moment (X-X Axis): Mx-ex = 0 ft-lb Eccentricity Moment (Y-Y Axis): My-ey = 0 ft-lb Moment Due to Lateral Loads (X-X Axis): Mx = 546 ft-lb Moment Due to Lateral Loads (Y-Y Axis): My = 0 ft-lb Bending Stress Lateral Loads Only (X-X Axis): Fbx = 866 psi Allowable Bending Stress (X-X Axis): Fbx' =2033 psi Bending Stress Lateral Loads Only (Y-Y Axis): Fby = 0 psi 2033 psi Allowable Bending Stress (Y-Y Axis): Fby' = **Combined Stress Factor:** CSF = 0.48

**Base Values** 

99 of 112

DEFLECTIONS

Live Load:

Dead Load:

Total Load:

COLUMN DATA Total Column Length:

Live Load Deflection Criteria:

HORIZONTAL REACTIONS

Unbraced Length (X-Axis) Lx: Unbraced Length (Y-Axis) Ly:

Column End Condition-K (e):

Axial Load Duration Factor

STUD PROPERTIES

Compressive Stress:

Modulus of Elasticity:

Stud Section (X-X Axis):

Stud Section (Y-Y Axis):

Slenderness Ratio:

Section Modulus (X-X Axis):

Section Modulus (Y-Y Axis):

Area:

Total Reaction at Top of Column:

Total Reaction at Bottom of Column:

VERTICAL REACTIONS

Location: Baloon Framed Stud Design (typical wind) - LSL Column

[2015 International Building Code(2015 NDS)] 1.75 IN x 5.5 IN x 17.25 FT @ 16 O.C. 1.55E Timberstrand LSL - iLevel Trus Joist Section Adequate By: 8.5%



StruCalc Version 10.0.1.6

3/24/2018 5:09:02 PM



#### Stud Calculations (Controlling Case Only):

ciad calculations (controlling case only).			
Controlling Load Case: Axial Dead Load and L	ateral loads	. (D + V	V or E)
Actual Compressive Stress:	Fc =	47	psi
Allowable Compressive Stress:	Fc' =	451	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	0	ft-lb
Eccentricity Moment (Y-Y Axis):	My-ey =	0	ft-lb
Moment Due to Lateral Loads (X-X Axis):	Mx =	744	ft-lb
Moment Due to Lateral Loads (Y-Y Axis):	My =	0	ft-lb
Bending Stress Lateral Loads Only (X-X Axis):	Fbx =	1012	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	3997	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	3997	psi
Combined Stress Factor:	CSF =	0.29	

StruCalc 9.0

100 of 112

age

DEFLECTIONS

Live Load:

Dead Load:

Total Load:

COLUMN DATA Total Column Length:

Axial Load Duration Factor

STUD PROPERTIES

Compressive Stress:

Modulus of Elasticity:

Stud Section (X-X Axis):

Stud Section (Y-Y Axis):

Slenderness Ratio:

Area:

VERTICAL REACTIONS

Location: Baloon Framed Stud Design (High Wind) - LSL Column

[2015 International Building Code(2015 NDS)] 1.75 IN x 5.5 IN x 17.25 FT @ 12 O.C. 1.55E Timberstrand LSL - iLevel Trus Joist Section Adequate By: 1.0%



StruCalc Version 10.0.1.6

3/24/2018 5:11:20 PM



### Stud Calculations (Controlling Case Only):

Controlling Load Case: Axial Dead Load and L	ateral loads	s (D + \	V or E)
Actual Compressive Stress:	Fc =	37	psi
Allowable Compressive Stress:	Fc' =	451	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	0	ft-lb
Eccentricity Moment (Y-Y Axis):	My-ey =	0	ft-lb
Moment Due to Lateral Loads (X-X Axis):	Mx =	800	ft-lb
Moment Due to Lateral Loads (Y-Y Axis):	My =	0	ft-lb
Bending Stress Lateral Loads Only (X-X Axis)	Fbx =	1088	psi
Allowable Bending Stress (X-X Axis):	Fbx' =	3997	psi
Bending Stress Lateral Loads Only (Y-Y Axis)	:Fby =	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	3997	psi
Combined Stress Factor:	CSF =	0.3	

101 of 112

age





## Ledger Calculations



			103 of	112
		PROJECT NO.	SHEET NO.	
A A A A A A A A A A A A A A A A A A A	PROJECT			
LONGITUDE	SUBJECT			
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /	

#### Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ¹ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ¹ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	E=1,900,000 psi and lower grades of MSR	0.50
Alaska Spruce	0.41	E=2,000,000 psi grades of MSR	0.51
Alaska Yellow Cedar	0.46	E=2,100,000 psi grades of MSR	0.52
Aspen	0.39	E=2,200,000 psi grades of MSR	0.53
BEAMS (DF #2, and Engineered	Lumber) 0.36	E=2,300,000 psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	E=2,400,000 psi grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	E=1,900,000 psi and lower grades of MSR and MEL	0.49
Douglas Fir-Larch	0.50	E=2,000,000 psi to 2,200,000 psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	E=2,300,000 psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastern Hemlock	0.41	E=1,000,000 psi and higher grades of MSR	0.46
Eastern Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	0493225
Eastern Hemlock-Tamarack	0.41	E=1,400,000 psi and lower grades of MSR	0.38
Eastern Hemlock-Tamarack (North)	0.47	E=1,500,000 psi and higher grades of MSR	0.46
Eastern Softwoods Joists and 2x members (HF #2	1202	Hem-Fir	14444
Eastern Spruce	0.41	E=1,500,000 psi and lower grades of MSR	0.43
Eastern White Pine	0.36	E=1,600,000 psi grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	E=1,700,000 psi grades of MSR	0.45
Hem-Fir	0.43	E=1,800,000 psi grades of MSR	0.46
Hem-Fir (North)	0.46	E=1,900,000 psi grades of MSR	0.47
Mixed Maple	0.55	E=2,000,000 psi grades of MSR	0.48
Mixed Oak	0.68	E=2,100,000 psi grades of MSR	0.49
Mixed Southern Pine	0.51	E=2,200,000 psi grades of MSR	0.50
Mountain Hemlock	0.47	E=2,300,000 psi grades of MSR	0.51
Northern Pine	0.42	E=2,400,000 psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	0.52
Northern Species	0.35	E=1,000,000 psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	E=1,000,000 psi and higher grades of MSK and MEL Southern Pine	0.46
Ponderosa Pine	0.43		0.55
	10.2625	E=1,700,000 psi and lower grades of MSR and MEL	0.57
Red Maple Red Oak	0.58	E=1,800,000 psi and higher grades of MSR and MEL	1000 CE 1000
Red Dak Red Pine	0.44	Spruce-Pine-Fir E=1 700 000 pci and lower studies of MSP and MEI	0.42
	100 C	E=1,700,000 psi and lower grades of MSR and MEL	0.46
Redwood, close grain	0.44	E=1,800,000 psi and 1,900,000 grades of MSR and MEL	0.50
Redwood, open grain	0.37 0.43	E=2,000,000 psi and higher grades of MSR and MEL	
Sitka Spruce		Spruce-Pine-Fir (South)	
Southern Pine	0.55	E=1,100,000 psi and lower grades of MSR	0.36
Spruce-Pine-Fir	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	E=1,200,000 psi to1,900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.36	E=2,000,000 psi and higher grades of MSR	0.50
Western Cedars	0.36	Western Cedars	242
Western Cedars (North)	0.35	E=1,000,000 psi and higher grades of MSR	0.36
Western Hemlock	0.47	Western Woods	
Western Hemlock (North)	0.46	E=1,000,000 psi and higher grades of MSR	0.36
Western White Pine	0.40		
Western Woods	0.36		
White Oak	0.73		
Yellow Poplar	0.43		

1. Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).

104	of	1	12
10-	o.		

																							104 of 1
<u></u>															P	ROJ	JEC	T NC	).		SHE	ET N	10.
	$\not\leftarrow$		th.	/		F	PRC	JE	СТ														
LO	NG	λIT	Ū	D	_	ç	SUE	3JE	СТ														
10	NE T	WE	INT	Υ°		F	3Y										Г	ΤΑC	F		/	/	
	GINEER																_ •						
SCREWS	Table	12K	f A (	two I for sat ASTM tabul	mem wn lur A 36 ated l	<b>WS:</b> ber) mber steel latera	Conr or SC I side al des	L with plate ign va	ons ^{1,} n ASTI (for t alues a	<b>2,3,4</b> M A6 S₅=1 /4 are ca	53, Gr 4") alcula	rade 3 ted b	33 ste ased	eel sid	de pla	te (fo	or t _s <1	L/4")			Ī		
	Side Member Thickness	Lag Screw Diameter	G=0.67		G=0.55 Minut Mania		G=0.5	is Fir-Larch	G=0.49 Douidae Fiel aroth		G=0.46 Doubles En/Cl	in i		Hem-Fir	G=0.42	Spruce-Pine-Fir	G=0.37	(open grain)	G=0.36 Eastern Softwoods Sonno-Piro-Fin(S)	Western Woods	G=0.35	Northern Species	
LAG	t, in.	D in.	Z _{II} Ibs.	Z_	Z _{II} Ibs.	Z_	Z _{II} Ibs.	Z_ Ibs.	Z _{II} Ibs.	Z_ Ibs.	Z _{II} Ibs.	Z_ Ibs.	Z _{II} Ibs.	Z_	Z _{II} Ibs.	Z_	Z _{II} Ibs.	Z_	Z _{II} Ibs.	Z_	Z _{II} Ibs.	Z_ Ibs.	
	0.075 (14 gage)	1/4 5/16	170 220	130 160	160 200	120 140	150 190	110 130	150 190	110 130	150 190	100 130	140 180	100 120	140 180	100 120	130 170	90 110	130 170	90 110	130 160	90 100	
	0.105	3/8 1/4	220 180	160 140	200 170	140 130	200 160	130 120	190 160	130 120	190 160	120 110	180 150	120	180 150	120 110	170 140	110 100	170 140	100 100	170 140	100 90	
	(12 gage)	5/16 3/8	230 230	170 160	210 210	150 140	200 200	140 140	200 200	140 130	190 200	130 130	190 190	130 120	190 190	120 120	180 180	110 110	170 180	110 110	170 170	110	
	0.120 (11 gage)	1/4 5/16	190 230	150 170	180 210	130 150	170 210	120 140	170 200	120 140	160 200	120 140	160 190	110 130	160 190	110 130	150 180	100 120	150 180	100 120	140 180	100 110	
	0.134	3/8 1/4	240 200	170 150	220 180	150 140	210 180	140 130	210 170	140 130	200 170	130 120	200 160	130 120	190 160	120 110	180 150	110 110	180 150	110 100	180 150	110	
	(10 gage)	5/16 3/8	240 240	180 170	220 220	160 150	210 220	150 140	210 210	140 140	200 210	140 140	200 200	130 130	200 200	130 130	190 190	120 120	180 190	120 120	180 180	120 110	
	0.179 (7 gage)	1/4 5/16	220 260	170 190	210 240	150 170	200 230	150 160	200 230	140 160	190 230	140 150	190 220	130 150	190 220	130 150	180 210	120 130	170 200	120 130	170 200	120 130	
		3/8 1/4	270 240	190 180	250 220	170	240 210	160	240 210	160	230 200	150	220	140	220 190	140	210	130 120	210	130 120	200	130	
	0.239 (3 gage)	5/16	300	220	280	190	270	180	260	180	260	170	190 250	160	250	160	180 230	150	180 230	150	180 230	140	
		3/8 7/16	310 420	220 290	280 390	190 260	270 380	180 240	270 370	180 240	260 360	170 230	250 350	160 220	250 350	160	240 330	140 200	230 330	140 200	230 320	140 190	
		1/2 5/8	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	230	
		3/4	770 1110	490 670	710 1020	430 590	680 980	400 560	680 970	400 550	660 950	380 530	640 920	370 500	630 910	360 500	600 860	330 450	590 850	330 450	580 840	320 440	
		7/8 1	1510 1940	880 1100	1390 1780	780 960	1330 1710	730 910	1320 1700	710 890	1280 1650	690 860	1250 1600	650 820	1230 1590	650 810	1170 1500	590 740	1160 1480	590 730	1140 1460	570 710	
	1/4	1/4 5/16	240 310	180 220	220 280	160 200	210 270	150 180	210 270	150 180	200 260	140 170	200 250	140 170	190 250	130 160	180 230	120 150	180 230	120 150	180 230	120 140	
		3/8	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	140	
		7/16 1/2	480 580	320 390	440 540	280 340	420 520	270 320	420 510	260 320	410 500	250 310	390 480	240 290	390 480	230 290	370 460	220 270	360 450	210 260	360 440	210 260	
		5/8 3/4	850 1200	530 730	780 1100	470 640	750 1060	440 600	740	440 590	720	420 570	700 990	400 540	690 980	400 530	660 930	370 490	650 920	360 480	640 900	350 470	
		7/8	1600 2040	930 1150	1470 1870	820 1000	1410 1800	770 950	1400 1780	750 930	1360 1730	720 900	1320 1680	690 850	1310 1660	680 840	1240 1570	630 770	1220 1550	620 760	1200 1530	600 740	
					10010												1 1 1 1 1 1						

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).

Tabulated lateral design values, Z, shall be intripried by an appreciate adjustment factors (see Table 11.5.1).
 Tabulated lateral design values, Z, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 8D; dowel bearing strengths, F_e, of 61,850 psi for ASTM A653, Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, F_{yin} of 70,000 psi for D = 1/4", 60,000 psi for D = 5/16", and 45,000 psi for D ≥3/8".
 Where the lag screw penetration, p, is less than 8D but not less than 4D, tabulated lateral design values, Z, shall be multiplied by p/8D or lateral design values.

shall be calculated using the provisions of 12.3 for the reduced penetration.
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, p_{min}.

SDS connection of steel plate to wood, assuming HF, 100 lbs per 1/4" DIA SDS un-factored, without group action reduction, pending application/spacing.

			105 of	112
		PROJECT NO.	SHEET NO.	
	PROJECT _			_
LONGITUDE	SUBJECT _			
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /	_

			for sawn l (tabulated	d lateral de	CL with bo sign value	oth members are calc	ers of ident culated bas member e	ed on an a	assumed l				
Side Member Thickness	Wood Screw Diameter	Wood Screw Number	G≡0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N)	G=0.46 Douglas Fir(S) Hem-Fir(N)	G=0,43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G=0.35 Northern Species	D SCN
ts	D										1		
in. 1/2	in. 0.138	6	Ibs. 88	lbs. 67	lbs. 59	lbs. 57	lbs. 53	lbs. 49	lbs. 47	Ibs. 41	1bs.	1bs. 38	
1000	0.151	7	96	74	65	63	59	54	52	45	44	42	
	0.164	8	107	82	73	71	66	61	59	51	50	48	
	0.177	9 10	121 130	94 101	83 90	81 87	76 82	70 75	68 73	59 64	58 63	56 60	61
	0.216		156	123	110	107	100	93	91	79	78	75	
- 23	0.242	14	168	133	120	117	110	102	99	87	86	83	1
5/8	0.138	6	94 104	76 83	66 72	64 70	59 64	53	52 56	44 48	43 47	41 45	
	0.151	7	120	92	80	70	72	58	63	54	53	51	
	0.177	9	136	103	91	88	81	74	72	62	61	58	
	0.190		146	111	97	94	88	80	78	67	65	63	
	0.216	12 14	173 184	133 142	117	114 123	106 115	97 106	95 103	82 89	80 87	77 84	
3/4	0.138	6	94	79	72	71	65	58	57	47	46	44	
	0.151	7	104	87	80	77	71	64	62	52	50	48	C
	0.164 0.177	8	120 142	101 114	88 99	85 96	78 88	71 80	69 78	58 66	56 64	54 61	
	0.190	10	153	122	107	103	95	86	83	71	69	66	۱. F
voical I	100000000000000000000000000000000000000		100000	20000-0	5 C 19 C 4 S	10000000	vith duration = 1.	03	100	86	84	80	07
3) SDS	W screws	into R	IM @ 12" o.c s	tud. Assuming w	orst case with 1	2' deck framing	with connections	s into 33	108	93 55	91 54	87 51	. E
							ig capacity of typi ber (LSL) - 489#,	ual 19	68	60	59	56	- 5
im). Co								UN. 30	78	67	65	62	2
	0.177	9 10	142 153	118	108	106	100	94 101	90 97	75 81	73 78	70 75	c
	0.190	12	193	161	147	143	131	118	114	96	93	89	0
	0.242	14	213	178	157	152	139	126	122	102	100	95	1
1-1/4	0.138	6	94	79	72	71	67	63	61	55	54	52	
	0.151	7	104 120	87 101	80 92	78 90	74	69 80	68 78	60 70	59 68	57 66	e 8
	0.177	9	142	118	108	106	100	94	92	82	80	78	D.C.
	0.190	10	153	128	117	114	108	101	99	88	87	84	1
	0.216	12 14	193 213	161 178	147 163	144 159	137 151	128 141	125 138	108 115	105	100 106	
			94	79	72	71	67	63	61	55	54	52	
1-1/2	0.242	6	100000	87	80	78	74	69	68	60	59	57	
1-1/2	0.242 0.138 0.151	7	104		92	90	85 100	80 94	78 92	70 82	68 80	66 78	
1-1/2	0.242 0.138 0.151 0.164	7 8	120	101	109		100	101	99	88	87	84	ï
1-1/2	0.242 0.138 0.151 0.164 0.177	7 8 9		118	108	106	108	101		10000			
1-1/2	0.242 0.138 0.151 0.164 0.177 0.190 0.216	7 8 9 10 12	120 142 153 193	118 128 161	117 147	114 144	108 137	128	125	111	109	106	
	0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242	7 8 9 10 12 14	120 142 153 193 213	118 128 161 178	117 147 163	114 144 159	108 137 151	128	125 138	123	120	117	
1-1/2	0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242 0.138	7 8 9 10 12 14 6	120 142 153 193 213 94	118 128 161 178 79	117 147 163 72	114 144 159 71	108 137 151 67	128 141 63	125 138 61	123 55	120 54	117 52	
	0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242	7 8 9 10 12 14	120 142 153 193 213	118 128 161 178	117 147 163	114 144 159	108 137 151	128	125 138	123	120	117	944 H
	0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242 0.138 0.151 0.164 0.177	7 8 9 10 12 14 6 7 8 9	120 142 153 193 213 94 104 120 142	118 128 161 178 79 87 101 118	117 147 163 72 80 92 108	114 144 159 71 78 90 106	108 137 151 67 74 85 100	128 141 63 69 80 94	125 138 61 68 78 92	123 55 60 70 82	120 54 59 68 80	117 52 57 66 78	
	0.242 0.138 0.151 0.164 0.177 0.190 0.216 0.242 0.138 0.151 0.164	7 8 9 10 12 14 6 7 8	120 142 153 193 213 94 104 120	118 128 161 178 79 87 101	117 147 163 72 80 92	114 144 159 71 78 90	108 137 151 67 74 85	128 141 63 69 80	125 138 61 68 78	123 55 60 70	120 54 59 68	117 52 57 66	

Γ

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix Table L3) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; and screw bending yield strengths, F_{phi} of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", and 70,000 psi for 0.236" < D ≤ 0.273".</li>
 Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values.

shall be calculated using the provisions of 12.3 for the reduced penetration.

Interior: Typical Ledger connection w/ SDS, un-factored since typical floor loading application with duration = 1. Minimum (3) SDSW screws into studs/rim @ 16" o.c stud. Assuming worst case with 14' floor framing with connections into RIM @ 16" o.c w/ 40 psf LL and 12 psf DL - loading on each connection, staggered, (and ignoring capacity of typical nailing of rim). Connection is 7' x 52 psf x 1.00 = 364# versus capacity into HF lumber (SS) - 423#, ok.

			106 of 11	2
		PROJECT NO.	SHEET NO.	
	PROJECT			
LONGITUDE	SUBJECT			
ONE TWENTY [®] ENGINEERING & DESIGN	BY	 DATE _	/ /	

		al design v ead penetra									
Specific Gravity,		of ::20		2	Lag Sci	ew Diam	eter, D	2001 2	07		10
G ²	1/4"	5/16"	3/8"	7/16"	1/2"	5/8"	3/4"	7/8"	1"	1-1/8"	1-1/4'
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	296	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

Tabulated withdrawal design values, W, for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Specific gravity, G, shall be determined in accordance with Table 12.3.3A.

12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration,  $p_{t_s}$  into the wood member.

12.2.3.3 The reference withdrawal design value, in lbs/in. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, with-in the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W'.

12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in lbs/in. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_b into the wood member. 12.2.3.5 Nails and spikes shall not be loaded in

withdrawal from end grain of wood ( $C_{eg}$ =0.0).

12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in cross-laminated timber ( $C_{eg}$ =0.0).

#### 12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

W = 180	0 G ² D	(12.2-4)	UC
	Ledger withdrawal capacity - a embed (tip discounted) into S 3 = 805# per 16" of ledger cor	S/HF material = 179# x	1.5 x

**DOWEL-TYPE FASTENERS** 

12

										PROJE	CT NO.	s	HEET I	107 of 112 NO.
ON		/EN	ΤY	/0	SUB	JECT					DATE	/		
REWS	Table 1	2M	(t fo (ta	OOD SCR wo memb or sawn lun abulated la ood screw	ber) Conn hber or SC ateral desi	L with AST	, <b>2,3</b> TM 653, Gr are calcul	rade 33 st ated base	eel side p ed on an as	late ssumed lei				
<b>D</b> SCREW	Side Member Thickness	Diameter	Wood Screw Number	G=0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglas Fir-Larch	G=0.49 Douglas Fir-Larch(N)	G≡0.46 Douglas Fir(S) Hem-Fir(N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Cedars Western Woods	G=0.35 Northern Species	-
NOOD	t _s in. 0.036 (20 gage)	in. 0.138 0.151 0.164	6 7 8	lbs. 89 99 113	lbs. 76 84 97	lbs. 70 78 89	lbs. 69 76 87	lbs. 66 72 83	lbs. 62 68 78	lbs. 60 67 77	lbs. 54 60 69	lbs. 53 59 67	lbs. 52 57 66	
M	0.048 (18 gage) 0.060	0.138 0.151 0.164 0.138	6 7 8 6	90 100 114 92	77 85 98 79	71 79 90 73	70 77 89 72	67 74 84 68	63 69 79 64	61 68 78 63	55 61 70 57	54 60 69 56	53 58 67 54	
	(16 gage)	0.151 0.164 0.177 0.190 0.138	7 8 9 10 6	101 116 136 146 95	87 100 116 125 82	81 92 107 116 76	79 90 105 114 75	75 86 100 108 71	71 81 94 102 67	70 79 93 100 66	63 71 83 90 59	61 70 82 88 58	60 68 79 86 57	
	(14 gage)	0.151 0.164 0.177 0.190 0.216 0.242	7 8 9 10 12 14	105 119 139 150 186 204	90 103 119 128 159 175	84 95 110 119 147 162	82 93 108 117 145 158	78 89 103 111 138 151	74 84 97 105 130 142	72 82 95 103 127 139	65 74 86 92 114 125	64 73 84 91 112 123	62 71 82 88 109 120	
	0.105 (12 gage)	0.138 0.151 0.164 0.177 0.190 0.216 0.242	6 7 8 9 10 12 14	104 114 129 148 160 196 213	90 99 111 128 138 168 183	84 92 103 119 128 156 170	82 90 102 116 125 153 167	79 86 97 111 120 146 159	74 81 92 105 113 138 150	73 80 90 103 111 135 147	66 72 81 93 100 122 132	65 71 80 91 98 120 130	63 69 77 89 96 116 126	

124

93

129

181

109

159

99

159

92

127

177

107

97

88

121

169

92

143

83

114

160

95

140

86

213

202

116

160

139

126

133

174

100

139

195

118

136

0.242 

0.138 

0.151 

0 164

0.177

0.190 12

0.216

0.242 

0.164

0.190 

0.216

0.242

0.138 0.151

0.164 

0.177 

0.190 

0.216 

0.242

0.151

0.164

0.190 

0.216 

0.242 

9

0.151 

9

14

7

7

0.177

0.120

(11 gage)

0.134

(10 gage)

0.179

(7 gage)

0.239

(3 gage)

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for rolled thread wood screws (see Appendix L) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10D; dowel bearing strength, F_{es} of 61,850 psi for ASTM A653, Grade 33 steel and screw bending yield strengths, F_{be} of 100,000 psi for 0.142", 90,000 psi for 0.142", 00,000 psi for 0.170", S0,000 psi for 0.177", S0,000 psi for 0.173".
 Where the wood screw penetration, p, is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

140

81

112

157

93

84

97

73

101

141

84

122

76

100

139

82

74

70

97

135

80

72

			108 of 1
		PROJECT NO.	SHEET NO.
	PROJECT _		
LONGITUDE	SUBJECT _		
ONE TWENTY ^o ENGINEERING & DESIGN	BY	DATE _	/ /

Cont.			Val for (tal	COMMON, BOX, or SINKER STEEL WIRE NAILS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections ^{1,2,3} for sawn lumber or SCL with ASTM 653, Grade 33 steel side plate (tabulated lateral design values are calculated based on an assumed length of nail penetration, p, into the main member equal to 10D)												
Side Member Thickness	12.0	Common Wire Nail	Box Nail	Sinker Nail	G≃0.67 Red Oak	G=0.55 Mixed Maple Southern Pine	G=0.5 Douglais Fir-Larch	G=0.49 Douglas Fir-Larch (N)	G=0.46 Douglas Fir (S) Hem-Fir (N)	G=0.43 Hem-Fir	G=0.42 Spruce-Pine-Fir	G=0.37 Redwood (open grain)	G=0.36 Eastern Softwoods Spruce-Pine-Fir(S) Western Voods Western Woods	G=0.35 Northern Species		
t,	D in.	Pen	nywe	ight	ibs.	Ibs.	lbs.	lbs.	lbs.	lbs.	lbs,	lbs.	lbs.	lbs.		
0.120 (11 gage)	0.099	6d	6d 8d 10d	7d 8d 10d	90 110 121 134	78 95 105 116	72 89 97 108	71 87 96 106	68 83 91 101	64 79 86 96	63 77 85 94	57 70 76 85	56 68 75 83	53 66 73 81		
	0.131 0.135	8d 10d		12d 16d	140 147 165	121 127 143	112 118 133	110 116 130	105 110 124	99 104 117	97 102 115	88 92 104	86 91 102	84 88 99		
		16d	40d	20d 30d	193 218 226	143 166 188 195	154 174 181	150 152 171 177	145 163 169	137 154 159	134 151 156	121 136 141	119 134 138	115 130 135		
	0.207 3	30d 40d 50d		40d	244 265 272	210 228 234	194 211 217	191 207 213	182 198 203	172 186 191	168 183 187	151 164 169	149 161 166	145 157 161		
0.134 (10 gage)	0.099	6d	6d 8d	7d 8d 10d	95 116 127	82 100 110	76 93 102	74 92 100	71 88 96	66 83 91	65 81 89	58 73 80	56 72 79	54 69 76		
	0.128	8d	10d	12d	140 146 153	122 126 132	113 117 123	111 115 121	106 110 115	100 104 109	98 102 107	89 92 96	87 90 95	85 88 92		
	0.148		20d 40d	16d 20d	172 199 224	148 172 194	138 160 180	135 157 176	129 150 169	122 142 159	120 139 156	108 125 141	106 123 138	104 120 135		
	0.207	20d 30d 40d		30d 40d	232 249 270	200 215 233	186 199 216	182 196 212	174 187 202	164 176 191	161 173 187	145 156 168	143 153 165	139 149 161		
0.179	0.244 5	50d	6d	60d 7d	277	239 82	221 76	217	207 71	195 66	192 65	173 58	170 56	165		
(7 gage)	0.113 0.120 0.128	6d	8d	8d 10d	126 142 161	107 121 137	99 111 126	97 109 124	92 104 118	86 97 111	84 95 108	76 85 97	74 83 94	70 79 90		
	0.135		20d	12d 16d	168 175 195	144 152 170	132 141 158	130 138 155	123 131 148	116 123 140	114 121 137	102 108 123	99 105 121	94 100 117		
	0.162 0.177 0.192 0.207	20d	40d	20d 30d 40d	224 249 256 272	194 215 222 236	180 200 206 219	177 197 203 215	169 188 194 205	160 178 183 194	157 174 179 190	142 157 162 172	140 155 159 169	136 151 155 164		
0.000	0.225 4	40d 50d		60d	292 299	252 258	234 240	230 235	220 225	207 212	203 208	184 188	180 185	176 180		
0.239 (3 gage)	0.120 0.128	6d	6d 8d 10d	7d 8d 10d	97 126 142 161	82 107 121 137	76 99 111 126	74 97 109 124	71 92 104 118	66 86 97 111	65 84 95 108	58 76 85 97	56 74 83 94	54 70 79 90		
	0.135		16d 20d 40d	12d 16d	169 180 205 245	144 153 174 209	132 141 160 192	130 138 157 188	123 131 149 179	116 123 140 168	114 121 137 165	102 108 123 147	99 105 121 145	94 100 117 140		
	0.177 0.192 0.207	20d 30d		20d 30d 40d	284 295 310	241 251 270	222 231 251	218 227 246	207 216 236	195 202 222	191 198 217	170 177 194	167 174 191	162 169 185		
10	0.225 4			60d	328 336	285 291	265 271	260 266	249 254	235 240	231 236	209 213	205 210	200 204		

Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
 Tabulated lateral design values, Z, are for common, box, or sinker steel wire nails (see Appendix Table L4) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p. into the main member equal to 10D; dowel bearing strength, F_{eb} of 61,850 psi for ASTM A653, Grade 33 steel and nail bending yield strengths, F_{ab} of 100,000 psi for 0.099" ≤ D ≤ 0.142", 90,000 psi for 0.142" < D ≤ 0.177", 80,000 psi for 0.177" < D ≤ 0.236", 70,000 psi for 0.236" < D ≤ 0.273".</li>
 Where the nail or spike penetration, p. is less than 10D but not less than 6D, tabulated lateral design values, Z, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

			109 of	112
		PROJECT NO.	SHEET NO.	
KICH	PROJECT _		•	_
LONGITUDE	SUBJECT _			_
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /	_

#### Table 11.3.6A Group Action Factors, Cg[,] for Bolt or Lag Screw Connections with Wood Side Members²

For D = 1", s = 4", E = 1,400,000 psi												
$A_s/A_m^{-1}$	A _s ¹		_		Nu	mber of	fasten	ers in a	row	_	_	
	in. ²	2	3	4	5	6	7	8	9	10	11	12
0.5	5	0.98	0.92	0.84	0.75	0.68	0.61	0.55	0.50	0.45	0.41	0.38
	12	0.99	0.96	0.92	0.87	0.81	0.76	0.70	0.65	0.61	0.57	0.53
	20	0.99	0.98	0.95	0.91	0.87	0.83	0.78	0.74	0.70	0.66	0.62
	28	1.00	0.98	0.96	0.93	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.84	0.81	0.78	0.75
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.87	0.84	0.82
1	5	1.00	0.97	0.91	0.85	0.78	0.71	0.64	0.59	0.54	0.49	0.45
	12	1.00	0.99	0.96	0.93	0.88	0.84	0.79	0.74	0.70	0.65	0.61
	20	1.00	0.99	0.98	0.95	0.92	0.89	0.86	0.82	0.78	0.75	0.71
	28	1.00	0.99	0.98	0.97	0.94	0.92	0.89	0.86	0.83	0.80	0.77
	40	1.00	1.00	0.99	0.98	0.96	0.94	0.92	0.90	0.87	0.85	0.82
1. Where A /	64	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88

1. Where A_s/A_m > 1.0, use A_m/A_s and use A_m instead of A_s.

2. Tabulated group action factors (Cg) are conservative for  $D \le 1$ ",  $s \le 4$ ", or  $E \ge 1,400,000$  psi.

#### Table 11.3.6B Group Action Factors, Cg, for 4" Split Ring or Shear Plate Connectors with Wood Side Members²

				s =	9", E =	= 1,400,	000 psi					
$A_s/A_m^{-1}$	A _s ¹				Nu	mber of	f fastene	ers in a	row			
	in. ²	2	3	4	5	6	7	8	9	10	11	12
0.5	5	0.90	0.73	0.59	0.48	0.41	0.35	0.31	0.27	0.25	0.22	0.20
	12	0.95	0.83	0.71	0.60	0.52	0.45	0.40	0.36	0.32	0.29	0.27
	20	0.97	0.88	0.78	0.69	0.60	0.53	0.47	0.43	0.39	0.35	0.32
	28	0.97	0.91	0.82	0.74	0.66	0.59	0.53	0.48	0.44	0.40	0.37
	40	0.98	0.93	0.86	0.79	0.72	0.65	0.59	0.54	0.49	0.45	0.42
	64	0.99	0.95	0.91	0.85	0.79	0.73	0.67	0.62	0.58	0.54	0.50
1	5	1.00	0.87	0.72	0.59	0.50	0.43	0.38	0.34	0.30	0.28	0.25
	12	1.00	0.93	0.83	0.72	0.63	0.55	0.48	0.43	0.39	0.36	0.33
	20	1.00	0.95	0.88	0.79	0.71	0.63	0.57	0.51	0.46	0.42	0.39
	28	1.00	0.97	0.91	0.83	0.76	0.69	0.62	0.57	0.52	0.47	0.44
	40	1.00	0.98	0.93	0.87	0.81	0.75	0.69	0.63	0.58	0.54	0.50
	64	1.00	0.98	0.95	0.91	0.87	0.82	0.77	0.72	0.67	0.62	0.58

1. Where  $A_a/A_m > 1.0$ , use  $A_m/A_s$  and use  $A_m$  instead of  $A_s$ . 2. Tabulated group action factors ( $C_g$ ) are conservative for 2-1/2" split ring connectors, 2-5/8" shear plate connectors, s < 9", or E > 1,400,000 psi.

			110 of 1	112
		PROJECT NO.	SHEET NO.	
	PROJECT _	 		_
LONGITUDE	SUBJECT _			_
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /	_

		Side P			, .g,						ns with	
	ŀ	for D =	1", s =	4", E _w	_{ood} = 1,4	400,000	psi, E,	teel = 30	,000,00	00 psi		
A _m /A _s	Am					mber of	ffasten	ers in a				
	in. ²	2	3	4	5	6	7	8	9	10	11	12
12	5	0.97	0.89	0.80	0.70	0.62	0.55	0.49	0.44	0.40	0.37	0.34
	8	0.98	0.93	0.85	0.77	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	16	0.99	0.96	0.92	0.86	0.80	0.75	0.69	0.64	0.60	0.55	0.52
	24	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.71	0.67	0.63	0.59
	40	1.00	0.98	0.96	0.94	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	64	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.86	0.83	0.80	0.77
	120	1.00	0.99	0.99	0.98	0.96	0.95	0.93	0.91	0.90	0.87	0.85
	200	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90
18	5	0.99	0.93	0.85	0.76	0.68	0.61	0.54	0.49	0.44	0.41	0.37
	8	0.99	0.95	0.90	0.83	0.75	0.69	0.62	0.57	0.52	0.48	0.44
	16	1.00	0.98	0.94	0.90	0.85	0.79	0.74	0.69	0.65	0.60	0.56
	24	1.00	0.98	0.96	0.93	0.89	0.85	0.80	0.76	0.72	0.68	0.64
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.86	0.83	0.81
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.94	0.92
24	40	1.00	0.99	0.97	0.95	0.93	0.89	0.86	0.83	0.79	0.76	0.72
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.88	0.85	0.83	0.80
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.93	0.92
30	40	1.00	0.98	0.96	0.93	0.89	0.85	0.81	0.77	0.73	0.69	0.65
	64	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	120	1.00	0.99	0.99	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
	200	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.94	0.92	0.90	0.89
35	40	0.99	0.97	0.94	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.60
	64	1.00	0.98	0.96	0.94	0.91	0.87	0.84	0.80	0.76	0.73	0.69
	120	1.00	0.99	0.98	0.97	0.95	0.92	0.90	0.88	0.85	0.82	0.79
	200	1.00	0.99	0.99	0.98	0.97	0.95	0.94	0.92	0.90	0.88	0.86
42	40	0.99	0.97	0.93	0.88	0.83	0.78	0.73	0.68	0.63	0.59	0.55
	64	0.99	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.72	0.68	0.64
	120	1.00	0.99	0.97	0.95	0.93	0.90	0.88	0.85	0.81	0.78	0.75
	200	1.00	0.99	0.98	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
50	40	0.99	0.96	0.91	0.85	0.79	0.74	0.68	0.63	0.58	0.54	0.51
	64	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.72	0.67	0.63	0.59
	120	1.00	0.98	0.97	0.94	0.91	0.88	0.85	0.81	0.78	0.74	0.71
	200	1.00	0.99	0.98	0.96	0.95	0.92	0.90	0.87	0.85	0.82	0.79

			111 of 1	112
		PROJECT NO.	SHEET NO.	
	PROJECT _			_
LONGITUDE	SUBJECT _			_
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /	_

		S =	= 9", E	$w_{ood} = 1$	,400,00	0 psi, F	$L_{steel} = 3$	0,000,0	00 psi			
A _m /A _s	Am	$s = 9", E_{wood} = 1,400,000 \text{ psi}, E_{steel} = 30,000,000 \text{ psi}$ Number of fasteners in a row										
	in. ²	2	3	4	5	6	7	8	9	10	11	12
12	5	0.91	0.75	0.60	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21
	8	0.94	0.80	0.67	0.56	0.47	0.41	0.36	0.32	0.29	0.26	0.24
	16	0.96	0.87	0.76	0.66	0.58	0.51	0.45	0.40	0.37	0.33	0.31
	24	0.97	0.90	0.82	0.73	0.64	0.57	0.51	0.46	0.42	0.39	0.35
	40	0.98	0.94	0.87	0.80	0.73	0.66	0.60	0.55	0.50	0.46	0.43
	64	0.99	0.96	0.91	0.86	0.80	0.74	0.69	0.63	0.59	0.55	0.51
	120	0.99	0.98	0.95	0.91	0.87	0.83	0.79	0.74	0.70	0.66	0.63
	200	1.00	0.99	0.97	0.95	0.92	0.89	0.85	0.82	0.79	0.75	0.72
18	5	0.97	0.83	0.68	0.56	0.47	0.41	0.36	0.32	0.28	0.26	0.24
	8	0.98	0.87	0.74	0.62	0.53	0.46	0.40	0.36	0.32	0.30	0.27
	16	0.99	0.92	0.82	0.73	0.64	0.56	0.50	0.45	0.41	0.37	0.34
	24	0.99	0.94	0.87	0.78	0.70	0.63	0.57	0.51	0.47	0.43	0.39
	40	0.99	0.96	0.91	0.85	0.78	0.72	0.66	0.60	0.55	0.51	0.47
	64	1.00	0.97	0.94	0.89	0.84	0.79	0.74	0.69	0.64	0.60	0.56
	120	1.00	0.99	0.97	0.94	0.90	0.87	0.83	0.79	0.75	0.71	0.67
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.89	0.86	0.82	0.79	0.76
24	40	1.00	0.96	0.91	0.84	0.77	0.71	0.65	0.59	0.54	0.50	0.46
	64	1.00	0.98	0.94	0.89	0.84	0.78	0.73	0.68	0.63	0.58	0.54
	120	1.00	0.99	0.96	0.94	0.90	0.86	0.82	0.78	0.74	0.70	0.66
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.85	0.82	0.78	0.75
30	40	0.99	0.93	0.86	0.78	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	64	0.99	0.96	0.90	0.84	0.78	0.71	0.66	0.60	0.56	0.51	0.48
	120	0.99	0.98	0.94	0.90	0.86	0.81	0.76	0.71	0.67	0.63	0.59
	200	1.00	0.98	0.96	0.94	0.91	0.87	0.83	0.79	0.76	0.72	0.68
35	40	0.98	0.91	0.83	0.74	0.66	0.59	0.53	0.48	0.43	0.40	0.36
	64	0.99	0.94	0.88	0.81	0.73	0.67	0.61	0.56	0.51	0.47	0.43
	120	0.99	0.97	0.93	0.88	0.82	0.77	0.72	0.67	0.62	0.58	0.54
	200	1.00	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.71	0.68	0.64
42	40	0.97	0.88	0.79	0.69	0.61	0.54	0.48	0.43	0.39	0.36	0.33
	64	0.98	0.92	0.84	0.76	0.69	0.62	0.56	0.51	0.46	0.42	0.39
	120	0.99	0.95	0.90	0.85	0.78	0.72	0.67	0.62	0.57	0.53	0.49
	200	0.99	0.97	0.94	0.90	0.85	0.80	0.76	0.71	0.67	0.62	0.59
50	40	0.95	0.86	0.75	0.65	0.56	0.49	0.44	0.39	0.35	0.32	0.30
	64	0.97	0.90	0.81	0.72	0.64	0.57	0.51	0.46	0.42	0.38	0.35
	120	0.98	0.94	0.88	0.81	0.74	0.68	0.62	0.57	0.52	0.48	0.45
	200	0.99	0.96	0.92	0.87	0.82	0.77	0.71	0.66	0.62	0.58	0.54

			112 of 11
	F	PROJECT NO.	SHEET NO.
KICH	PROJECT		
LONGITUDE	SUBJECT		
ONE TWENTY [®] ENGINEERING & DESIGN	BY	DATE _	/ /
	Knee Brace Calculation (Max Capacity	)	
PT DF-#2	45° 2'-6" connection w/ 3/4"x7" Lag Screws		
M = V* h - T * d * 0.70 Shear (3/4" diam) = 8 Withdrawal = 2873# T total = 1355#			
Therefore:			
V = T/5.66			
V Max - 1355/5.6	6 =		
=239 lbs/brace			