LONGITUDE

ONE TWENTY
ENGINEERING \& DESIGN

Calculation Package for QUI RESIDENCE REMODEL
 8028 SE 36TH ST
 MERCER ISLAND, WA 98040

PROJECT \#: S200831-6
DATE: 09/02/20

STRUCTURAL ENGINEER L120 ENGINEERING \& DESIGN 13150 91ST PL NE KIRKLAND, WA 98034
CONTACT: MANS THURFJELL, PE PHONE: 425-636-3313

Project Number: S200831-6	Plan Name: Qui Residence Remodel	Sheet Number: DC
Engineer: $\quad \mathbf{x x x}$	Specifics: Design Criteria	Date: $\quad 9 / 2 / 2020$

Gravity Criteria:
BLUE = Review and update as required - Typical Input
Code: IBC 2015

| ROOF SYSTEM | | |
| ---: | ---: | ---: | ---: |
| Live Load: | | |
| Dead Load: | | |
| Composite Roofing | 25.0 | psf |
| 19/32" Plywood Sheathing | 2.5 | psf |
| Trusses at 24" o.c. | 3.0 | psf |
| Insulation | 1.8 | psf |
| (2) Layers 5/8" GWB | 4.4 | psf |
| Misc or Tile Roof | $\mathbf{1 . 3}$ | psf |
| Total | $\mathbf{1 5 . 0}$ | $\mathbf{p s f}$ |

FLOOR SYSTEM			
Live Load:			
	Residential	40.0	psf
Dead Load:			
	Flooring	3.0	psf
3/4" T \& G Plywood	2.5	psf	
Floor Joists at 16" o.c.	2.5	psf	
Insulation	0.5	psf	
(1) Layers 5/8" GWB	2.2	psf	
Misc or Tile Flooring	$\mathbf{1 . 3}$	psf	
Total	$\mathbf{1 2 . 0}$	psf	

EXTERIOR WALL SYSTEM			
2×6 at 16 " o.c.	1.7	psf	
Insulation	1.0	psf	
1/2" Plywood Sheathing	1.5	psf	
(2) layers 5/8" GWB	4.4	psf	
Misc or Brick Covered Wall	$\mathbf{3 . 4}$	psf	
Total	$\mathbf{1 2 . 0}$	psf	

INTERIOR WALL SYSTEM		
2×4 at $16^{\prime \prime}$ o.c.	1.1	psf
Insulation	0.5	psf
(2) Layers $5 / 8^{\prime \prime}$ GWB	4.4	psf
Misc	2.0	psf
Total	$\mathbf{8 . 0}$	psf

SEISMIC PARAMETERS:

Code Reference: ASCE 7-10
R $=$ 6.5 Bearing Wall System, Wood Structural Panel Walls
Mapped Spectral Acceleration, $\mathrm{Ss}=\mathbf{1 . 4 0 6}$
Mapped Spectral Acceleration, S1 $=\mathbf{0 . 5 3 5}$
Soil Site Class $=\mathbf{D}$

WIND PARAMETERS:

Code Reference: ASCE 7-10
Basic Wind Speed (3 second Gust) $=\mathbf{1 1 0} \mathrm{mph}$

$$
\begin{array}{rc}
\text { Exposure : } & \mathbf{B} \\
\text { Kzt }= & \mathbf{1 . 4 0}
\end{array}
$$

SOIL PARAMETERS:

Soil Bearing Pressure $=1,500 \quad \mathrm{psf} \quad$ competent native soil or structural fill $1 / 3$ increase for short-term wind or seismic loading is acceptable Frost Depth $=18$ in

Lateral Wall Pressures: Unrestrained Active Pressure $=$ 35 pcf Cantilevered walls
Restrained Active Pressure $=\mathbf{5 0}$ pcf Plate Wall Design/Tank Walls
Passive Pressure $=\mathbf{3 5 0}$ pcf
Soil Friction Coeff. $=\mathbf{0 . 3 5}$

LONGITUDE

 ONE TWENTYㅁ ENGINEERING \& DESIGN
FRAMING CALCULATIONS

BEAM REFERENCE PER PLAN

Roof, GT-1 (RXN ONLY)

3 piece(s) 1 3/4" x 11 7/8" 1.55E TimberStrand® LSL

Support 1 failed reaction check due to insufficient bearing capacity.
Support 2 failed reaction check due to insufficient bearing capacity.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6305 @ 2"	4784 (2.25")	Failed (132\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	5670 @ 1' 3 3/8"	14817	Passed (38\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	36452 @ 11' 9 1/2"	27519	Failed (132\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	1.934 @ 11' $91 / 2^{\prime \prime}$	0.581	Failed (L/144)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	3.210 @ 11' $91 / 2^{\prime \prime}$	1.163	Failed (L/87)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Stud wall - HF	3.50 "	2.25"	2.97"	2527	3832	6359	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25"	2.97"	2527	3832	6359	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$23^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow (1.15)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $23^{\prime} 53 / 4^{\prime \prime}$	N/A	19.5	--	
1 - Uniform (PSF)	0 to $23^{\prime} 7 \prime \prime$ (Front)	13^{\prime}	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Roof, RJ-1
1 piece(s) 2×10 Hem-Fir No. 2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (Ibs)			(
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - HF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	211	352	563	$11 / 4^{\prime \prime}$ Rim Board
2-Stud wall - HF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.50^{\prime \prime}$	211	352	563	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 2^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$13^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $14^{\prime} 1^{\prime \prime}$	$24 "$	15.0	25.0	roof

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Roof, RH-1
1 piece(s) 4×6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	853 @ 0	3281 (1.50")	Passed (26\%)	--	1.0 D + 1.0 S (All Spans)		
Shear (lbs)	547 @ 7"	2657	Passed (21\%)	1.15	1.0 D + 1.0 S (All Spans)		
Moment (Ft-lbs)	693 @ 1' 7 1/2"	1979	Passed (35\%)	1.15	1.0 D + 1.0 S (All Spans)		
Live Load Defl. (in)	0.011 @ 1' 7 1/2"	0.108	Passed (L/999+)	--	1.0 D + 1.0 S (All Spans)		
Total Load Defl. (in)	0.017 @ 1' 7 1/2"	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)		

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length				Loads to Supports (lbs)			
	Total	Available	Required	Dead	Snow	Total	Accessories	
1 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	325	528	853	None	
2- Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	325	528	853	None	

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $3^{\prime} 3^{\prime \prime}$	N/A	4.9	--	
1 - Uniform (PSF)	0 to $3^{\prime} 3^{\prime \prime}$	13^{\prime}	15.0	25.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Roof, RH-2
1 piece(s) 4×6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$515 @ 0$	$3281(1.50 ")$	Passed (16\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$442 @ 7^{\prime \prime}$	2657	Passed (17\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$1062 @ 4^{\prime} 11 / 2^{\prime \prime}$	1979	Passed (54\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.101 @ 4^{\prime} 11 / 2^{\prime \prime}$	0.275	Passed (L/983)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Building Use : Reader					
Building Codential $:$ IBC 2015					
Design Methodology : ASD					

- Deflection criteria: LL (L/360) and TL (L/5/16").
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - HF	1.50"	1.50"	1.50"	206	309	515	None
2 - Trimmer - HF	1.50"	1.50"	1.50 "	206	309	515	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$8^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $8^{\prime} 3^{\prime \prime}$	N/A	4.9	--	
1 - Uniform (PSF)	0 to $8^{\prime} 3^{\prime \prime}$	3^{\prime}	15.0	25.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Roof, RH-3
1 piece(s) 4×6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$515 @ 0$	$3281(1.50 ")$	Passed (16\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$442 @ 7^{\prime \prime}$	2657	Passed (17\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Momber Type : Header					
Moment (Ft-lbs)	$1062 @ 4^{\prime} 11 / 2^{\prime \prime}$	1979	Passed (54\%)	1.15	$1.0 \mathrm{D}+1.0$ S (All Spans)
Live Load Defl. (in)	$0.101 @ 44^{\prime} 11 / 2^{\prime \prime}$	0.275	Passed (L/983)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.168 @ 4^{\prime} 11 / 2^{\prime \prime}$	0.313	Passed (L/591)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)

- Deflection criteria: LL (L/360) and TL (L/5/16").
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1 - Trimmer - HF	1.50"	1.50"	1.50"	206	309	515	None
2 - Trimmer - HF	1.50"	1.50"	1.50 "	206	309	515	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$8^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$8^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $8^{\prime} 3^{\prime \prime}$	N/A	4.9	--	
1 - Uniform (PSF)	0 to $8^{\prime} 3^{\prime \prime}$	3^{\prime}	15.0	25.0	ROOF

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Roof, RH-4
1 piece(s) 5 1/2" x 7 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2236 @ 2"	8181 (3.50")	Passed (27\%)	--	1.0 D + 1.0 S (All Spans)
Shear (lbs)	1896 @ 11"	8381	Passed (23\%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	6386 @ 6' 1/2"	11859	Passed (54\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.277 @ 6' 1/2"	0.392	Passed (L/509)	--	1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.456 @ 6' 1/2"	0.587	Passed (L/309)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=11^{\prime} 9{ }^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - SPF	3.50"	3.50 "	1.50 "	876	1359	2235	Blocking
2 - Stud wall - SPF	3.50"	3.50 "	1.50"	876	1359	2235	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$12^{\prime} 11^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$12^{\prime} 1 \mathrm{o} / \mathrm{c}$	

\bullet Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	0 to $12^{\prime} 1^{\prime \prime}$	N / A	10.0	--	
1 - Uniform (PSF)	0 to $12^{\prime} 1^{\prime \prime}$ (Front)	9^{\prime}	15.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Roof, RH-4.1
1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2311 @ 0$	$3413(1.50 ")$	Passed (68\%)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Shear (lbs)	$1989 @ 101 / 2^{\prime \prime}$	6400	Passed (31\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Pos Moment (Ft-lbs)	$5279 @ 3 '$	10868	Passed (49\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.051 @ 3^{\prime} 15 / 16^{\prime \prime}$	0.208	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ S (All Spans)
Total Load Defl. (in)	$0.084 @ 3^{\prime} 15 / 16^{\prime \prime}$	0.313	Passed (L/891)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=6^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			(
	Total	Available	Required	Dead	Snow	Total	
1-Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	901	1410	2311	None
2- Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	866	1355	2221	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 3$ " o/c	
Bottom Edge (Lu)	$6^{\prime} 3 \prime$ " o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0-Self Weight (PLF)	0 to $6^{\prime} 3^{\prime \prime}$	N/A	7.7	--	
1 - Uniform (PSF)	0 to $6^{\prime} 3^{\prime \prime}$	9^{\prime}	15.0	25.0	Default Load
2 - Point (lb)	3^{\prime}	N / A	876	1359	Linked from: RH-4, Support 1

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny J ones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Second Floor, SB-1

$\mathbf{1}$ piece(s) $\mathbf{4 \times 1 0}$ Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1280 @ 2 "$	$3189\left(2.25{ }^{\prime \prime}\right)$	Passed (40\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$823 @ 1^{\prime} 3 / 4^{\prime \prime}$	3885	Passed (21\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1641 @ 2^{\prime} 91 / 2^{\prime \prime}$	4492	Passed (37\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.017 @ 2^{\prime} 91 / 2^{\prime \prime}$	0.131	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.022 @ 2^{\prime} 91 / 2^{\prime \prime}$	0.262	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	3.50"	2.25 "	1.50"	324	1005	1329	1 1/4" Rim Board
2-Stud wall - HF	3.50"	2.25"	1.50"	324	1005	1329	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 55^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 55^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $5^{\prime} 53 / 4^{\prime \prime}$	N/A	8.2	--	
1 - Uniform (PSF)	0 to $5^{\prime} 7^{\prime \prime}$ (Front)	9^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	J ob Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Second Floor, SB-2

1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1152 @ 2 "$	$3189(2.25 ")$	Passed (36\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$735 @ 103 / 4^{\prime \prime}$	3045	Passed (24\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1189 @ 2^{\prime} 31 / 2^{\prime \prime}$	2989	Passed (40\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.017 @ 2^{\prime} 31 / 2^{\prime \prime}$	0.106	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.022 @ 2^{\prime} 31 / 2^{\prime \prime}$	0.213	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	3.50"	2.25 "	1.50"	289	917	1206	1 1/4" Rim Board
2-Stud wall - HF	3.50"	2.25"	1.50"	289	917	1206	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$4^{\prime} 55^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$4^{\prime} 55^{\prime \prime} 0 / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $4^{\prime} 53 / 4^{\prime \prime}$	N/A	6.4	--	
1 - Uniform (PSF)	0 to $4^{\prime} 7^{\prime \prime}$ (Front)	10^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	J ob Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD	
Member Reaction (lbs)	438 @ $21 / 2^{\prime \prime}$	1367 (2.25")	Passed (32\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Shear (lbs)	360 @ 1' 2 3/4"	1688	Passed (21\%)	1.00	1.0 D + 1.0 L (All Spans)		
Moment (Ft-lbs)	1336 @ 6' 5"	2577	Passed (52\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Live Load Defl. (in)	0.123 @ 6' 5"	0.310	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
Total Load Defl. (in)	0.160 @ 6' 5"	0.621	Passed (L/930)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)		
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A		

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	3.50"	2.25 "	1.50"	103	342	445	1 1/4" Rim Board
2 - Stud wall - HF	3.50"	2.25 "	1.50"	103	342	445	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$9^{\prime} 1^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 8 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $12^{\prime} 10^{\prime \prime}$	$16^{\prime \prime}$	12.0	40.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$546 @ 21 / 2^{\prime \prime}$	$1367\left(2.25^{\prime \prime}\right)$	Passed (40\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$454 @ 1^{\prime} 3 / 4^{\prime \prime}$	1388	Passed (33\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$1496 @ 5^{\prime} 91 / 2^{\prime \prime}$	1917	Passed (78\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.218 @ 5^{\prime} 91 / 2^{\prime \prime}$	0.279	Passed (L/616)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Building Use : Joist					
Building Codential $:$ IBC 2015					
Total Load Defl. (in)	$0.261 @ 5^{\prime} 91 / 2^{\prime \prime}$	0.558	Passed (L/513)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	N/A	N/A	N/A	--	N/A

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	3.50"	2.25"	1.50"	93	463	556	11/4" Rim Board
2 - Stud wall - HF	3.50"	2.25 "	1.50"	93	463	556	11/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 8{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$11^{\prime} 5{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to $11^{\prime} 7^{\prime \prime}$	$16^{\prime \prime}$	12.0	60.0	deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

2 piece(s) $\mathbf{2} \mathbf{x} \mathbf{1 0}$ Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$618 @ 22^{\prime \prime}$	$2734\left(2.25^{\prime \prime}\right)$	Passed (23\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$312 @ 11^{\prime} 3 / 4^{\prime \prime}$	2775	Passed (11\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$561 @ 2^{\prime} 1 / 2^{\prime \prime}$	3333	Passed (17\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.004 @ 2^{\prime} 1 / 2^{\prime \prime}$	0.094	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0$ L (All Spans)
Total Load Defl. (in)	$0.006 @ 2^{\prime} 1 / 2^{\prime \prime}$	0.188	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Stud wall - HF	3.50"	2.25 "	1.50"	161	490	651	11/4" Rim Board
2-Stud wall - HF	3.50"	2.25 "	1.50"	161	490	651	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 11^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 11^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $3^{\prime} 113 / 4^{\prime \prime}$	N/A	7.0	--	
1 - Uniform (PSF)	0 to $4^{\prime} 1^{\prime \prime}$ (Front)	6^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	J ob Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1478 @ 2"	4101 (2.25")	Passed (36\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	1318 @ 1'3/4"	4163	Passed (32\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	4496 @ 5' 13/16"	5000	Passed (90\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.226 @ 6' 1 1/2"	0.306	Passed (L/649)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	0.310 @ 6' $19 / 16^{\prime \prime}$	0.613	Passed (L/474)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	3.50"	2.25 "	1.50"	402	1092	1494	11/4" Rim Board
2-Stud wall - HF	3.50"	2.25 "	1.50"	342	908	1250	11/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 7^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$12^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	$11 / 4^{\prime \prime}$ to $12^{\prime} 53 / 4^{\prime \prime}$	N / A	10.6	--	
1 - Uniform (PSF)	0 to $12^{\prime} 77^{\prime \prime}$ (Front)	3^{\prime}	12.0	40.0	Default Load
2 - Point (lb)	4^{\prime} (Front)	N / A	161	490	Linked from: DB-1, Support 1

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Second Floor, DH-2

1 piece(s) 6×10 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1832 @ 2 "$	$8181(3.50 ")$	Passed (22\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1272 @ 1^{\prime} 1^{\prime \prime}$	5922	Passed (21\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$2946 @ 3^{\prime} 61 / 2^{\prime \prime}$	6032	Passed (49\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.038 @ 3^{\prime} 61 / 2^{\prime \prime}$	0.225	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.047 @ 3^{\prime} 61 / 2^{\prime \prime}$	0.338	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - SPF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	344	1488	1832	Blocking
2 - Stud wall - SPF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	344	1488	1832	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$7^{\prime} 1^{\prime \prime} 0 / \mathrm{c}$	
Bottom Edge (Lu)	$7^{\prime} 1^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
0 - Self Weight (PLF)	0 to $7^{\prime} 1^{\prime \prime}$	N / A	13.2	--	
1 - Uniform (PSF)	0 to $7^{\prime} 1^{\prime \prime}$ (Front)	7^{\prime}	12.0	60.0	DECK

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Second Floor, DH-3

1 piece(s) 6×10 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2419 @ 2 "$	8181 (3.50")	Passed (30\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1973 @ 11^{\prime} 1^{\prime \prime}$	6810	Passed (29\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$5545 @ 3^{\prime} 6 "$	6937	Passed (80\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.051 @ 3' 6 7/16"	0.225	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.079 @ 33^{\prime} 67 / 16^{\prime \prime}$	0.338	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1-Stud wall - SPF	$3.50{ }^{\prime \prime}$	3.50 "	$1.50{ }^{\prime \prime}$	788	1488	688	2964	Blocking
2-Stud wall - SPF	3.50"	3.50"	1.50"	777	1488	671	2936	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$7^{\prime} 1^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$7^{\prime} 1^{\prime \prime}$ o/c	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny J ones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Second Floor, DH-4

1 piece(s) 5 1/2" x 9 1/ 2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2734 @ 2 "$	$8181(3.50 ")$	Passed (33\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$2174 @ 1^{\prime} 1^{\prime \prime}$	9231	Passed (24\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Pos Moment (Ft-lbs)	$6786 @ 5^{\prime} 31 / 2^{\prime \prime}$	16546	Passed (41\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.147 @ 5^{\prime} 31 / 2^{\prime \prime}$	0.342	Passed (L/834)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.181 @ 5^{\prime} 31 / 2^{\prime \prime}$	0.512	Passed (L/678)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length $L=10^{\prime} 3^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			(
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - SPF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	512	2223	2735	Blocking
2 - Stud wall - SPF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50 "$	512	2223	2735	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$10^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$10^{\prime} 7 \mathrm{o} \circ \mathrm{c}$	

\bullet Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0)}$	Comments
0 - Self Weight (PLF)	0 to $10^{\prime} 7^{\prime \prime}$	N / A	12.7	--	
1 - Uniform (PSF)	0 to $10^{\prime} 7^{\prime \prime}$ (Front)	7^{\prime}	12.0	60.0	DECK

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny J ones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Second Floor, SH-1

1 piece(s) 4×8 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1288 @ 0	3281 (1.50")	Passed (39\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	947 @ 8 3/4"	3045	Passed (31\%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1771 @ 2' 9"	2989	Passed (59\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.028 @ 2' 9"	0.183	Passed (L/999+)	--	1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.054 @ 2' 9"	0.275	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Trimmer - HF	1.50"	1.50"	1.50 "	628	660	138	1426	None
2 - Trimmer - HF	1.50"	1.50 "	1.50"	628	660	138	1426	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$5^{\prime} 6 " \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$5^{\prime} 6 " \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny J ones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Second Floor, SH-2

1 piece(s) 4×6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$759 @ 0$	$3281(1.50 ")$	Passed (23\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$486 @ 77^{\prime \prime}$	2310	Passed (21\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Momber : Wall					
Moment (Ft-lbs)	$616 @ 1^{\prime} 71 / 2^{\prime \prime}$	1720	Passed (36\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.008 @ 11^{\prime} 71 / 2^{\prime \prime}$	0.108	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.015 @ 1^{\prime} 71 / 2^{\prime \prime}$	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Trimmer - HF	1.50"	1.50"	1.50"	369	390	81	840	None
2 - Trimmer - HF	1.50"	1.50 "	1.50"	369	390	81	840	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 3 \mathrm{Jo} \mathrm{o} / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 3 \mathrm{o} o / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Second Floor, SH-3

1 piece(s) 4×6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1189 @ 0	3281 (1.50")	Passed (36\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	762 @ 7"	2657	Passed (29\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	966 @ 1' 7 1/2"	1979	Passed (49\%)	1.15	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	0.012 @ 1' 7 1/2"	0.108	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.024 @ 1' 7 1/2"	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Wall
Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Trimmer - HF	1.50"	1.50"	1.50"	598	260	528	1386	None
2 - Trimmer - HF	1.50"	1.50"	1.50"	598	260	528	1386	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

Second Floor, SH-4

1 piece(s) 4×6 Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$1106 @ 0$	$3281(1.50 ")$	Passed (34\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$709 @ 77^{\prime \prime}$	2310	Passed (31\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Member Type : Header					
Moment (Ft-lbs)	$899 @ 1^{\prime} 71 / 2^{\prime \prime}$	1720	Passed (52\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.017 @ 11^{\prime} 71 / 2^{\prime \prime}$	0.108	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.022 @ 1^{\prime} 71 / 2^{\prime \prime}$	0.162	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Floor Live	Total	
1 - Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	261	845	1106	None
2- Trimmer - HF	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	$1.50^{\prime \prime}$	261	845	1106	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$3^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	
Bottom Edge (Lu)	$3^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $(\mathbf{1 . 0 0})$	Comments
0 - Self Weight (PLF)	0 to $3^{\prime} 3^{\prime \prime}$	N / A	4.9	--	
1 - Uniform (PSF)	0 to $3^{\prime} 3^{\prime \prime}$	13^{\prime}	12.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@1120engineering.com	

Second Floor, SH-5

$\mathbf{1}$ piece(s) $\mathbf{4 \times 1 0}$ Douglas Fir-Larch No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2513 @ 0$	$3281(1.50 ")$	Passed (77\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$1793 @ 103 / 4^{\prime \prime}$	3885	Passed (46\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$3927 @ 3^{\prime} 11 / 2^{\prime \prime}$	4492	Passed (87\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Mive Load Defl. (in)	$0.059 @ 3^{\prime} 11 / 2^{\prime \prime}$	0.208	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Building Use : Reader					
Building Code $:$ IBC 2015					
Total Load Defl. (in)	$0.075 @ 3^{\prime} 11 / 2^{\prime \prime}$	0.313	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Trimmer - HF	1.50"	1.50"	1.50 "	513	2000	2513	None
2 - Trimmer - HF	1.50"	1.50 "	1.50"	513	2000	2513	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	$6^{\prime} 3^{\prime \prime}$ o/c	
Bottom Edge (Lu)	$6^{\prime} 3^{\prime \prime} \mathrm{o} / \mathrm{c}$	

-Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Comments
0-Self Weight (PLF)	0 to $6^{\prime} 3^{\prime \prime}$	N / A	8.2	--	
1- Uniform (PSF)	0 to $6^{\prime} 3^{\prime \prime}$	7^{\prime}	12.0	40.0	FLOOR
2 - Uniform (PSF)	0 to $6^{\prime} 3^{\prime \prime}$	6^{\prime}	12.0	60.0	DECK

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Kenny Jones	
L120 Engineering	
(817) 727-2136	
kjones@l120engineering.com	

LONGITUDE
 ONE TWENTY
 ENGINEERING \& DESIGN

FOUNDATION CALCULATIONS

FOOTING REFERENCE PER PLAN

Project: Metrostructure - Gravity
Location: 16" Cont FTG - Max
Footing
[2015 International Building Code(2015 NDS)]
Fanting Size: 16.0 IN Wide $\times 8.0$ IN Deep Continuous Footing With 8.0 IN Thick x 18.0 IN Tall Stemwall

LongitudinalReinforcement: (2) Continuous \#4 Bars
TransverseReinforcement: \#4 Bars @ 12.00 IN . O.C. (unnecessary)
Section Footing Design Adequate

FOOTING PROPERTIES	
Allowable Soil Bearing Pressure:	Qs $=1500 \mathrm{psf}$
Concrete Compressive Strength:	$\mathrm{F}^{\prime} \mathrm{c}=2500 \mathrm{psi}$
Reinforcing Steel Yield Strength:	$\mathrm{Fy}=40000 \mathrm{psi}$
Concrete Reinforcement Cover:	$\mathrm{c}=3 \mathrm{in}$
FOOTING SIZE	
Width:	$\mathrm{W}=16 \mathrm{in}$
Depth:	Depth $=8$ in
Effective Depth to Top Layer of Steel:	$\mathrm{d}=4.25$ in

STEMWALL SIZE
 Stemwall Width: 8 in
 Stemwall Height: 18 in
 Stemwall Weight: 150 pcf

FOOTING CALCULATIONS

Bearing Calculations:

Ultimate Bearing Pressure:	$\mathrm{Qu}=$	1388 psf
Effective Allowable Soil Bearing Pressure:	$\mathrm{Qe}=$	1400 psf
Width Required:	Wreq =	1.32 ft
Beam Shear Calculations (One Way Shear):		
Beam Shear:	Vu1 $=$	0 lb
Allowable Beam Shear:	Vc1 $=$	3825 lb
Transverse Direction:		
Bending Calculations:		
Factored Moment:	$\mathrm{Mu}=$	1310 in-lb
Nominal Moment Strength:	$\mathrm{Mn}=$	$0 \mathrm{in}-\mathrm{lb}$
Reinforcement Calculations:		
Concrete Compressive Block Depth:	$\mathrm{a}=$	0.30 in
Steel Required Based on Moment:	As(1) $=$	0.01 in2
Min. Code Req'd Reinf. Shrink./Temp. (ACI-10.5.4	As(2) =	0.19 in 2
Controlling Reinforcing Steel:	As-reqd $=$	0.19 in 2
Selected Reinforcement: Trans	\#4's @ 1	. 0 in. o.c.
Reinforcement Area Provided:	As $=$	0.19 in 2
Development Length Calculations:		
Development Length Required:	Ld =	15 in
Development Length Supplied:	Ld-sup =	1 in

Longitudinal Direction:

Reinforcement Calculations:
Min. Code Req'd Reinf. Shrink./Temp. (ACl-10.5.4): As(2) $=0.26$ in2
Controlling Reinforcing Steel: As-reqd $=0.26$ in2
Selected Reinforcement: Longitudinal: (2) Cont. \#4 Bars
Reinforcement Area Provided: \quad As $=\quad 0.39 \mathrm{in} 2$

LOADING DIAGRAM

FOOTING LOADING

Live Load:	$\mathrm{PL}=1000 \mathrm{plf}$
Dead Load:	$\mathrm{PD}=700 \mathrm{plf}$
Total Load:	$\mathrm{PT}=1850 \mathrm{plf}$
Ultimate Factored Load:	$\mathrm{Pu}=2620$ plf

General Footing

DESCRIPTIO $30 \times 30 \times 10$

Code References

Calculations per ACI 318-14, IBC 2015, CBC 2016, ASCE 7-10
Load Combinations Used : ASCE 7-10

General Information

Material Properties		Soil Design Values	
f'c : Concrete 28 day strength	3.0 ksi	Allowable Soil Beari	1.50 ksf
fy : Rebar Yield	60.0 ksi	Increase Bearing By Footing Weight	No
Ec: Concrete Elastic Modulus	3,155.92 ksi	Soil Passive Resistance (for Sliding)	250.0 pcf
Concrete Density	145.0 pcf	Soil/Concrete Friction Coeff.	0.30
φ Values Flexure	0.90		
Shear	0.750	Increases based on footing Depth	
Analysis Settings		Footing base depth below soil surface =	1.0 ft
Min Steel \% Bending Reinf.	$=0.00180$	Allow press. increase per foot of depth $=$	ksf
Min Allow \% Temp Reinf.	0.00180	when footing base is below =	ft
Min. Overturning Safety Factor	1.0: 1		
Min. Sliding Safety Factor	1.0:1	Increases based on footing plan dimension	
Add Ftg Wt for Soil Pressure	No	Allowable pressure increase per foot of depth	
Use ftg wt for stability, moments \& shears	Yes	$\text { when max lenath or width is areater than }=$	ksf
Add Pedestal Wt for Soil Pressure	No	when max. length or width is greater than	ft
Use Pedestal wt for stability, mom \& shear	No		

Dimensions

General Footing				Software copyright ENERCALC, INC. 1983-2019, Build:10.19.1.27 . Licensee : L120 Engineering and Design, KW-06011993	
LLic. \#:KW-06011993 $30 \times 30 \times 10$ Licensee: L120 Engineering and Design, KW-06011993DESCRIPTIO					
DESIGN	SUMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9953	Soil Bearing	1.493 ksf	1.50 ksf	+D+L+H about $\mathrm{Z}-\mathrm{Z}$ axis
PASS	n/a	Overturning - $\mathrm{X}-\mathrm{X}$	$0.0 \mathrm{k}-\mathrm{ft}$	0.0 k -ft	No Overturning
PASS	n/a	Overturning-Z-Z	$0.0 \mathrm{k}-\mathrm{ft}$	0.0 k -ft	No Overturning
PASS	n/a	Sliding - $\mathrm{X}-\mathrm{X}$	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.2176	Z Flexure (+X)	$1.590 \mathrm{k-ft/ft}$	7.306 k-ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2176	Z Flexure (-X)	$1.590 \mathrm{k-f/f/t}$	7.306 k -ft/ft	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.2176	X Flexure (+Z)	$1.590 \mathrm{k}-\mathrm{ft} / \mathrm{ft}$	$7.306 \mathrm{k}-\mathrm{ft} / \mathrm{tt}$	+1.20D+0.50Lr $1.60 \mathrm{~L}+1.60 \mathrm{H}$
PASS	0.2176	X Flexure (-Z)	$1.590 \mathrm{k}-\mathrm{ft} / \mathrm{tt}$	$7.306 \mathrm{k}-\mathrm{ft} / \mathrm{tt}$	+1.20D+0.50Lr+1.60L+1.60H
PASS	0.1991	1-way Shear (+X)	16.354 psi	82.158 psi	$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$
PASS	0.1991	1-way Shear (-X)	16.354 psi	82.158 psi	$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$
PASS	0.1991	1-way Shear (+Z)	16.354 psi	82.158 psi	$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$
PASS	0.1991	1-way Shear (-Z)	16.354 psi	82.158 psi	$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$
PASS	0.3722	2-way Punching	61.160 psi	164.317 psi	$+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$
Detailed Results					

Soil Bearing								
 Load Combination... Gross	Allowable		(in)	Actual Bottom, -Z	$\begin{array}{r} \text { Soil Bearin } \\ \text { Top, }+Z \end{array}$	$\begin{gathered} \text { Stress } @ 1 \\ \text { Left, }-X \end{gathered}$	ocation Right, +X	Actual / Allow Ratio
X-X, +D+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
$\mathrm{X}-\mathrm{X},+\mathrm{D}+\mathrm{L}+\mathrm{H}$	1.50	n/a	0.0	1.493	1.493	n/a	n/a	0.995
X-X, +D+Lr+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+S+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+0.750Lr+0.750L+H	1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +D+0.750L+0.750S+H	1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +D+0.60W+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+0.70E+H	1.50	n/a	0.0	0.8208	0.8208	n/a	n/a	0.547
X-X, +D+0.750Lr+0.750L+0.450W	1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +D+0.750L+0.750S+0.450W	1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, +D+0.750L+0.750S+0.5250E	1.50	n/a	0.0	1.325	1.325	n/a	n/a	0.883
X-X, $+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$	1.50	n/a	0.0	0.4925	0.4925	n/a	n/a	0.328
X-X, +0.60D+0.70E+0.60H	1.50	n/a	0.0	0.4925	0.4925	n/a	n/a	0.328
Z-Z, +D+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+L+H	1.50	0.0	n/a	n/a	n/a	1.493	1.493	0.995
Z-Z, +D+Lr+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+S+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+0.750Lr+0.750L+H	1.50	0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +D+0.750L+0.750S+H	1.50	0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +D+0.60W+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+0.70E+H	1.50	0.0	n/a	n/a	n/a	0.8208	0.8208	0.547
Z-Z, +D+0.750Lr+0.750L+0.450W	1.50	0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +D+0.750L+0.750S+0.450W	1.50	0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +D+0.750L+0.750S+0.5250E	1.50	0.0	n/a	n/a	n/a	1.325	1.325	0.883
Z-Z, +0.60D+0.60W +0.60H	1.50	0.0	n/a	n/a	n/a	0.4925	0.4925	0.328
Z-Z, +0.60D+0.70E+0.60H	1.50	0.0	n/a	n/a	n/a	0.4925	0.4925	0.328
Overturning Stability								

|
 Load Combination...\quad Overturning Moment | Resisting Moment | Stability Ratio | Status |
| :---: | :---: | :---: | :---: | :---: |

Footing Has NO Overturning

Sliding Stability

All units k

General Footing

DESCRIPTIO 30x30x10

Footing Flexure

Flexure Axis \& Load Combination	$\underset{\mathrm{k} \text { - } \mathrm{ft}}{\mathrm{Mu}}$	Side	Tension Surface	As Req'd in^2	Gvrn. As $i^{n}{ }^{\wedge} 2$	$\begin{gathered} \text { Actual As } \\ \text { in }^{\wedge} 2 \end{gathered}$	Phi*Mn k-ft	Status
X-X, +1.40D+1.60H	0.8750	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.40D+1.60H	0.8750	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D+0.50Lr+1.60L+1.601	1.590	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D $+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$	1.590	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D $+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$	1.590	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D $+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$	1.590	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D +1.60Lr+0.50L+1.601	1.013	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D+1.60Lr+0.50L+1.60H	1.013	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D $+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60$	0.750	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D $+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60$	0.750	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D $+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	1.013	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D $+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	1.013	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D+1.60S+0.50W +1.60I	0.750	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D $+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{I}$	0.750	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{X}-\mathrm{X},+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1$.	1.013	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D+0.50Lr+0.50L+W+1.	1.013	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D+0.50L+0.50S+W+1.1	1.013	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D+0.50L+0.50S+W+1.1	1.013	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D+0.50L+0.20S+E+1.6	1.013	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +1.20D+0.50L+0.20S+E+1.6	1.013	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +0.90D $+\mathrm{W}+0.90 \mathrm{H}$	0.5625	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, $+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	0.5625	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +0.90D+E+0.90H	0.5625	+Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
X-X, +0.90D+E+0.90H	0.5625	-Z	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.40 \mathrm{D}+1.60 \mathrm{H}$	0.8750	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.40 \mathrm{D}+1.60 \mathrm{H}$	0.8750	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$	1.590	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$	1.590	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$	1.590	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+1.60 \mathrm{~L}+0.50 \mathrm{~S}+1.60 \mathrm{H}$	1.590	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
Z-Z, +1.20D+1.60Lr+0.50L+1.601	1.013	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~L}+1.60 \mathrm{H}$	1.013	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60$	0.750	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60$	0.750	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	1.013	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	1.013	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	0.750	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	0.750	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1$.	1.013	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{Lr}+0.50 \mathrm{~L}+\mathrm{W}+1$.	1.013	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.6$	1.013	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.6$	1.013	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.20 \mathrm{~S}+\mathrm{E}+1.6$	1.013	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.20 \mathrm{~S}+\mathrm{E}+1.6$	1.013	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	0.5625	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	0.5625	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$	0.5625	-X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK
$\mathrm{Z}-\mathrm{Z},+0.90 \mathrm{D}+\mathrm{E}+0.90 \mathrm{H}$ One Way Shear	0.5625	+X	Bottom	0.2160	Min Temp \%	0.240	7.306	OK

Load Combination... Vu	Vu @ -X V	Vu @ +X	Vu @ -Z Vu	Vu @ +Z V	Vu:Max	Phi Vn Vu	V / Phi*Vn	Status
+1.40D+1.60H	9.00 psi	i 9.00 psi	i 9.00 psi	i 9.00 psi	9.00 psi	82.16 psi	si 0.11	O
+1.20D $+0.50 \mathrm{Lr}+1.60 \mathrm{~L}+1.60 \mathrm{H}$	16.35 psi	i $\quad 16.35 \mathrm{psi}$	i 16.35 psi	i 16.35 psi	16.35 psi	82.16 psi	0.20	OK
+1.20D+1.60L+0.50S+1.60H	16.35 psi	i 16.35 psi	i 16.35 psi	i 16.35 psi	16.35 psi	82.16 psi	- 0.20	O
$+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~L}+1.60 \mathrm{H}$	10.41 psi	i $\quad 10.41 \mathrm{psi}$	i $\quad 10.41$ psi	i $\quad 10.41 \mathrm{psi}$	10.41 psi	82.16 psi	si 0.13	O
$+1.20 \mathrm{D}+1.60 \mathrm{Lr}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	7.71 psi	i $\quad 7.71 \mathrm{psi}$	i $\quad 7.71$ psi	i $\quad 7.71$ psi	i 7.71 psi	82.16 psi	si 0.09	O
+1.20D $+0.50 \mathrm{~L}+1.60 \mathrm{~S}+1.60 \mathrm{H}$	10.41 psi	i 10.41 psi	i $\quad 10.41$ psi	i $\quad 10.41$ psi	i 10.41 psi	82.16 psi	si 0.13	O
$+1.20 \mathrm{D}+1.60 \mathrm{~S}+0.50 \mathrm{~W}+1.60 \mathrm{H}$	7.71 psi	i $\quad 7.71 \mathrm{psi}$	i $\quad 7.71$ psi	i $\quad 7.71$ psi	7.71 psi	82.16 psi	si 0.09	OK
+1.20D+0.50Lr $+0.50 \mathrm{~L}+\mathrm{W}+1.60 \mathrm{H}$	H 10.41 psi	i 10.41 psi	i 10.41 psi	i 10.41 psi	10.41 psi	82.16 psi	si 0.13	O
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.50 \mathrm{~S}+\mathrm{W}+1.60 \mathrm{H}$	H 10.41 psi	i 10.41 psi	i $\quad 10.41$ psi	i 10.41 psi	10.41 psi	82.16 psi	- 0.13	
$+1.20 \mathrm{D}+0.50 \mathrm{~L}+0.20 \mathrm{~S}+\mathrm{E}+1.60 \mathrm{H}$	- 10.41 psi	i $\quad 10.41$ psi	i $\quad 10.41 \mathrm{psi}$	i $\quad 10.41 \mathrm{psi}$	i $\quad 10.41$ psi	82.16 psi	- 0.13	
$+0.90 \mathrm{D}+\mathrm{W}+0.90 \mathrm{H}$	5.79 psi	i $\quad 5.79 \mathrm{psi}$	i $\quad 5.79 \mathrm{psi}$	i $\quad 5.79 \mathrm{psi}$	5.79 psi	82.16 psi	- 0.07	

General Footing

DESCRIPTIO $30 \times 30 \times 10$

One Way Shear

LONGITUDE
 ONE TWENTY ${ }^{\circ}$
 ENGINEERING \& DESIGN

LATERAL CALCULATIONS

SHEAR-WALL REFERENCE PER PLAN

Search Information

Address:	8028 SE 36th St, Mercer Island, WA 98040, USA
Coordinates:	$47.579157,-122.2310302$
Elevation:	203 ft
Timestamp:	$2020-09-01$ T23:18:04.765Z
Hazard Type:	Wind

ASCE 7-16		ASCE 7-10		ASCE 7-05	
MRI 10-Year	67 mph	MRI 10-Year	72 mph	ASCE 7-05 Wind Speed	85 mph
MRI 25-Year	73 mph	MRI 25-Year	79 mph		
MRI 50-Year	78 mph	MRI 50-Year	85 mph		
MRI 100-Year	83 mph	MRI 100-Year	91 mph		
Risk Category 1	92 mph	Risk Category 1	100 mph		
Risk Category II	97 mph	Risk Category II	110 mph		
Risk Category III	104 mph	Risk Category III-IV	115 mph		
Risk Category IV	108 mph				

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imnlv annroval bv the anvernina buildina code bodies resnonsible for buildina code annroval and internretation for the https://hazards.atcouncil.org/\#/wind?lat=47.579157\&Ing=-122.2310302\&address=8028 SE 36th St\%2C Mercer Island\%2C WA 98040\%2C USA

ATC
 Hazards by Location

Search Information

Address:	8028 SE 36th St, Mercer Island, WA 98040, USA
Coordinates:	$47.579157,-122.2310302$
Elevation:	203 ft
Timestamp:	$2020-09-01 \mathrm{~T} 23: 18: 28.127 Z$
Hazard Type:	Seismic
Reference	ASCE7-16
Document:	II
Risk Category:	D
Site Class:	D

Basic Parameters

Name	Value	Description
S_{S}	1.406	MCE $_{R}$ ground motion (period=0.2s)
S_{1}	0.489	MCE $_{R}$ ground motion (period=1.0s)
S_{MS}	1.406	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	* null	Site-modified spectral acceleration value
S_{DS}	0.937	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	* null	Numeric seismic design value at 1.0 s SA
* See Section 11.4.8		

-Additional Information

Name	Value	Description
SDC	* null	Seismic design category
F_{a}	1	Site amplification factor at 0.2 s
F_{v}	* null	Site amplification factor at 1.0 s
CR_{S}	0.902	Coefficient of risk (0.2s)
CR_{1}	0.897	Coefficient of risk (1.0s)
PGA	0.602	$\mathrm{MCE}_{\mathrm{G}}$ peak ground acceleration
$\mathrm{F}_{\mathrm{PGA}}$	1.1	Site amplification factor at PGA
PGA_{M}	0.662	Site modified peak ground acceleration

T_{L}	6	Long-period transition period (s)
SsRT	1.406	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.558	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
SsD	3.454	Factored deterministic acceleration value (0.2s)
S1RT	0.489	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.546	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
S1D	1.393	Factored deterministic acceleration value (1.0s) PGAd
	1.184	Factored deterministic acceleration value (PGA)

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Hazards by Location

Search Information

Address: 8028 SE 36th St, Mercer Island, WA 98040, USA

Coordinates:	$47.579157,-122.2310302$
Elevation:	203 ft
Timestamp:	$2020-09-01 T 23: 18: 50.888 Z$
Hazard Type:	Seismic

Reference ASCE7-10

Document:
Risk Category: II

Site Class: D

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S_{S}	1.392	MCE $_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.535	MCE $_{\mathrm{R}}$ ground motion (period=1.0s)
S_{MS}	1.392	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	0.803	Site-modified spectral acceleration value
S_{DS}	0.928	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	0.535	Numeric seismic design value at 1.0 s SA

-Additional Information

Name	Value	Description
SDC	D	Seismic design category
F_{a}	1	Site amplification factor at 0.2 s
$\mathrm{~F}_{\mathrm{V}}$	1.5	Site amplification factor at 1.0 s

CR $_{\text {S }}$	0.959	Coefficient of risk (0.2s)
CR $_{1}$	0.934	Coefficient of risk (1.0s)
PGA	0.574	MCE $_{\text {G }}$ peak ground acceleration
FPGA	1	Site amplification factor at PGA
PGA $_{\text {M }}$	0.574	Site modified peak ground acceleration
$\mathrm{T}_{\text {L }}$	6	Long-period transition period (s)
SsRT	1.392	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.451	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
SsD	2.894	Factored deterministic acceleration value (0.2s)
S1RT	0.535	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.573	Factored uniform-hazard spectral acceleration (2\% probability of exceedance in 50 years)
S1D	1.202	Factored deterministic acceleration value (1.0s)
PGAd	1.113	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

SIMPLIFIED DESIGN WIND PRESSURE, $\mathrm{P}_{\mathrm{S} 30}$ (psf) (Exposure B at $h=30 f t$.)												
Basic Wind$\begin{array}{\|c\|} \text { Speed, Vs } \\ (\mathrm{mph}) \end{array}$	RoofAngle(Degrees)	Load Case	ZONES*									
			Horizontal Pressure				Vertical Presssure				Overhang	
			A	B	C	D	E	F	G	H	$\mathrm{E}_{\text {OH }}$	G_{OH}
110	26.57	A	23.32	7.31	17.34	6.44	-6.82	-14.13	-5.10	-11.57	-16.05	-14.40

* Values Interpolated from Figure 28.6-1 ASCE 7-10 p. 303 to 305

Project Number:	Plan:	Sheet Number:
S200831-6	Qui Residence Remodel	L1
Engineer:	Specifics:	Date
$\mathbf{X x X}$	WIND FORCES	9/2/2020

HORIZONTAL LOADS (psf)				MIN. LOADS (psf) Per ASCE 7-10, 28.6.3	
$p_{s=} \lambda^{*} K z t^{*} P s 30$		Interior zone		Roof	Wall
A (Wall)	B (Roof)	C (Wall)	D (Roof)		
32.64	10.24	24.27	9.02	8.0	16.0

ASD WIND FORCES: FRONT / BACK LOADING DIRECTION											
Location		Width (ft)	Height (ft)	Plane	End Zone		Interior zone		$\begin{gathered} \hline \text { Force } \\ 0.6 \omega^{*} \mathrm{~W} \\ (\mathrm{kips}) \\ \hline \end{gathered}$	Min Force$\begin{gathered} 0.6 \omega^{*} \mathrm{~W} \\ (\mathrm{kips}) \\ \hline \end{gathered}$	
		Length (ft)			$\begin{gathered} \text { Pressure }(\mathrm{W}) \\ (\mathrm{psf}) \end{gathered}$	Length (ft)	$\begin{array}{\|c\|} \hline \text { Pressure }(\mathrm{W}) \\ (\mathrm{psf}) \end{array}$				
$\begin{aligned} & \text { Co } \\ & \text { O } \\ & \text { On } \end{aligned}$	Height" of Roof to Plate (see note)		23.0	5.00	(roof)	6.0	32.64	17.0	24.27	2.37	0.72
	Plate to Mid 2nd LVL	23.0	4.00	(wall)	6.0	32.64	17.0	24.27	1.90	1.15	
								$\Sigma=$	4.27	1.87	
	Mid 2nd LVL to Floor	23.0	4.00	(wall)	6.0	32.64	17.0	24.27	1.90	1.15	
	ight" Low-Roof to Plate (see note)	0.0	0.00	(roof)	6.0	32.64	-6.0	24.27	0.00	0.00	
	Floor to Mid 1st LVL	23.0	4.00	(wall)	6.0	32.64	17.0	24.27	1.90	1.15	
							$\Sigma=$		3.80	2.30	
Total Wind Base Shear (kips)									8.07	4.16	

ASD WIND FORCES: SIDE / SIDE LOADING DIRECTION											
Location		Width(ft)	Height (ft)	Plane	End Zone		Interior zone		$\begin{gathered} \text { Force } \\ 0.6 \omega^{*} \mathrm{~W} \\ \text { kips } \end{gathered}$	$\begin{gathered} \text { Min Force } \\ 0.6 \omega * \mathrm{~W} \\ \text { kips } \\ \hline \end{gathered}$	
		Length (ft)			$\begin{gathered} \text { Pressure }(\mathrm{W}) \\ (\mathrm{psf}) \\ \hline \end{gathered}$	Length (ft)	$\begin{array}{\|c\|} \hline \text { Pressure }(\mathrm{W}) \\ (\mathrm{psf}) \end{array}$				
$\begin{aligned} & \text { Co } \\ & 0 \\ & 0 \\ & \end{aligned}$	Height" of Roof to Plate (see note)		24.0	5.00	(roof)	6.0	10.24	18.0	9.02	0.87	0.75
	Plate to Mid 2nd LVL	24.0	4.00	(wall)	6.0	32.64	18.0	24.27	1.97	1.20	
								$\Sigma=$	2.85	1.95	
$\begin{aligned} & \text { 关 } \\ & 0 \\ & 0,1 \\ & \text { In } \\ & \text { N } \end{aligned}$	Mid 2nd LVL to Floor	24.0	4.00	(wall)	6.0	32.64	18.0	24.27	1.97	1.20	
	ight" Low-Roof to Plate (see note)	0.0	0.00	(roof)	6.0	10.24	-6.0	9.02	0.00	0.00	
	Floor to Mid 1st LVL	24.0	4.00	(wall)	6.0	32.64	18.0	24.27	1.97	1.20	
								$\Sigma=$	3.95	2.40	
Total Wind Base Shear (kips)									6.80	4.34	

Project Number:		Plan Name:	Sheet Number:
S200831-6	Qui Residence Remodel	L2	
Engineer:	Specifics:	SEISMIC WEIGHTS	Date:
		9/2/2020	

Unit Weights (psf)
Roof: 15 psf

Floor: 12 psf
Exterior Wall: 12 psf
Interior Wall: 8 psf
Concrete Deck: 0 psf

Seismic Weights include: (REF §12.7)
25% of storage Live loads
Actual partition weight or 10 psf min if applicable
Operating weight of permenant equipment
20% of uniform design snow loads for areas where $\mathrm{Pf}>30 \mathrm{psf}$

LEVEL	ITEM	AREA / LENGT H	HEIGHT (ft)	$\begin{gathered} \text { WEIGH } \\ \mathbf{T} \\ \text { (psf) } \end{gathered}$		Item Total Weight. (lbs)	Sub- Total (kips)	Average Pressure (psf)
ROOF								
	Roof	400	1.10	15	$=$	6,629		
	Ext. Wall Below	75	4.00	12	=	3,600		
	Corridor Wall Below	50	4.00	8	$=$	1,600		
							12	30

2nd FLOOR						
Floor	350	1.00	12		4,200	
Deck	0	1.00	0	$=$	0	
Low Roof	0	1.10	15	$=$	0	
Ext. Wall Above	75	4.00	12	$=$	3,600	
Corridor Wall Above	50	4.00	8	$=$	1,600	
Ext. Wall Below	75	4.00	12	$=$	3,600	
Corridor Wall Below	50	4.00	8			1,600
$\mathbf{4 2}$						

1st FLOOR

Ext. Wall Above	75	4.00	12	$=$	3,600	
Corridor Wall Above	50	4.00	8	$=$	1,600	

Project Number:	Plan Name:	Sheet Number:
S200831-6	Qui Residence Remodel	L3
Engineer:	Specifics:	Date:
Xxx	SEISMIC FORCES	9/2/2020

Equivelant Lateral Force Analysis per IBC 2015 1613.1 \rightarrow ASCE 7-10 Table 12.6-1 \rightarrow Sec 12.8
Data generated by: Seismic Design Values for Buildin "Java Ground Motion Parameter Calculation"

S_{1}	$=0.489$		Maps
S_{DS}	$=0.937$		(ASCE 7 EQ 11.4.-3)
$\mathrm{S}_{\mathrm{D} 1}$	$=$	0.535	
Factor	$=$	1.00	
	(ASCE 7 EQ 11.4.-4)		
tegory	$=$	D	(ASCE 7 Table 11.5-1)
tor, R	$=$	6.5	
(ASCE 7 Table 11.6-1 \& 11.6.2)			
(ASCE 7 Table 12.2-1)			

Seismic Force-Resisting System Description = A. 13 - light framed walls

| Building Height, $\mathrm{h}_{\mathrm{n}}=$ | 21.0 | ft | |
| ---: | :---: | :---: | :--- | :--- |
| Building Period Coefficient, $\mathrm{C}_{\mathrm{T}}=$ | 0.020 | | (ASCE 7 Table 12.8.-2) |
| Approx. Fundamental Period, $\mathrm{T}_{\mathrm{a}}=$ | 0.196 | $\left(\mathrm{C}_{\mathrm{T}^{*}}\left(\mathrm{~h}_{\mathrm{n}}{ }^{0.75}\right)\right.$ | (ASCE 7 EQ 12.8.-7) |
| Approx. Fundamental Period, $\mathrm{T}_{\mathrm{L}}=$ | 6.0 | sec | (ASCE 7 11.4.5) |

Seismic Response Coefficient

$$
\mathrm{C}_{\mathrm{s}}=\mathrm{S}_{\mathrm{DS}} /(\mathrm{R} / \mathrm{I}) \quad \mathrm{C}_{\mathrm{s}}=0.144
$$

(ASCE 7 EQ 12.8.-2)
Seismic Response Coefficient, Maximum

$$
\begin{array}{lllll}
\mathrm{C}_{\mathrm{s}, \mathrm{MAX}}=\mathrm{S}_{\mathrm{DI}} /\left(\mathrm{T}^{*} \mathrm{R} / \mathrm{I}\right) & \mathrm{C}_{\mathrm{s}, \mathrm{MAX}}= & 0.420 & \mathrm{~T} \leq \mathrm{T}_{\mathrm{L}} & (\text { (ASCE } 7 \text { EQ 12.8.-3) } \\
\mathrm{C}_{\mathrm{s}, \mathrm{MAX}}=\mathrm{S}_{\mathrm{D} 1} \mathrm{~T}_{\mathrm{L}} /\left(\mathrm{T}^{2} * \mathrm{R} /\right. & \mathrm{C}_{\mathrm{s}, \mathrm{MAX}}= & \mathrm{NA} & \mathrm{~T}>\mathrm{T}_{\mathrm{L}} & (\text { ASCE 7EQ 12.8.-4) }
\end{array}
$$

Seismic Response Coefficient, Minimum

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{s}, \mathrm{MIN}}=0.01 \\
& \mathrm{C}_{\mathrm{s}, \mathrm{MIN}}=0.010 \\
& \mathrm{C}_{\mathrm{s}, \mathrm{MIN}}=0.5 \mathrm{~S}_{1} /(\mathrm{R} / \mathrm{I}) \\
& \mathrm{C}_{\mathrm{s}, \mathrm{MIN}}=\mathrm{NA} \\
& \mathrm{C}_{\mathrm{s}}=\mathbf{0 . 1 4 4} \\
& \text { Dead Load W }=26 \text { kips } \\
& \mathrm{V}=\mathrm{Cs} \mathrm{~W}=3.8 \quad \text { kips } \quad \text { (ASCE 7 EQ 12.8.-1) } \\
& \mathrm{Q}_{\mathrm{E}}=\mathrm{V}=\quad 3.8 \quad \text { kips } \quad \text { (ASCE 7 EQ 12.4-3) } \\
& \rho=\quad 1.0 \quad \text { (ASCE 7 12.3.4.2) } \\
& \mathrm{E}_{\mathrm{H}}=\rho \mathrm{Q}_{\mathrm{E}} \quad 3.8 \quad \text { kips } \quad \text { (ASCE 7 EQ 12.4-3) } \\
& \mathrm{Ev}=.2 \mathrm{~S}_{\mathrm{DS}} \mathrm{D}=0.19 \quad \mathrm{xD} \text { kips } \\
& \text { (ASCE } 7 \text { EQ 12.8.-5) } \\
& \text { (ASCE } 7 \text { EQ 12.4-3) }
\end{aligned}
$$

Factor for Alternate Basic Load conbinations - 2015 IBC 1605.3.2

$$
\begin{aligned}
\mathbf{E}_{\mathbf{H}} / \mathbf{1 . 4} & = & \mathbf{2 . 7} & \text { kips } & & \text { IBC 2015 1605.3.2 } \\
\mathrm{k} & = & 1 & & & (\text { ASCE } 712.8 .3)
\end{aligned}
$$

VERTICAL DISTRIBUTION (Per ASCE 7-12.8.3)

Floor	Area (ft ${ }^{2}$)	Story Height H (ft)	Total Height h_{x} (ft)	Story Weight w_{x} (kips)	$\begin{aligned} & \mathrm{w}_{\mathrm{x}} \mathrm{~h}_{\mathrm{k}}{ }^{2} \\ & (\mathrm{k}-\mathrm{ft} \end{aligned}$	Vert Dist Factor Cvx	Story Force Fx (kips)	Factored Story Force (ASD) Fx $\rho / 1.4=\mathrm{E}_{\mathrm{H}} / 1.4$ (kips)
Roof 2nd	400	8.08 8.08	$\begin{gathered} 16.16 \\ 8.08 \end{gathered}$	$\begin{aligned} & 12 \\ & 15 \end{aligned}$	191	$\begin{aligned} & 0.62 \\ & 0.38 \end{aligned}$	2.4	1.7
				Sum $=$	309	1.000	3.8	2.7

Project Number:			
S200831-6	Plan Name:		Sheet Number:
Engineer:	Specifics:	Qui Residence Remodel	L4
xxx		DESIGN LOADS	Date:

FRONT / BACK APPLIED FORCES

Wind Force $0.6 \omega * W_{S}(k i p s)$		Seismic Force $E / 1.4 ~(k i p s)$	
Per Level	Sum	Per Level	Sum
4.27		1.68	
3.80	4.27		1.68
	8.07		2.72

Project	Qui Residence Remodel	sheet number:
	L7	
Subject	SHEAR WALL EQUATION DIAGRAM	Date
	9/2/2020	

SHEAR WALL WITH WINDOW BASED ON SHEAR TRANSFER:

Where:
$\mathrm{V}_{\mathrm{i}}=$ Story Shear
$\mathrm{W}_{\mathrm{i}}=$ Story Dead Load
$\mathrm{HD}_{\mathrm{i}}=$ Story Holdown
$\mathrm{M}_{\mathrm{OTi}}=$ Story Over Turning Moment
$\mathrm{M}_{\mathrm{Ri}}=$ Story Resisting Moment
$\mathrm{M}_{\text {OT ROOF }}=\mathrm{V}_{\text {ROOF }} \times \mathrm{H}_{1+1}$
$\mathrm{M}_{\mathrm{R} \text { ROOF }}=0.6 \times \mathrm{W}_{\mathrm{ROOF}} \times \mathrm{D}^{2} / 2$
$\mathrm{HD}_{\mathrm{i}+1}=\left(\mathrm{M}_{\mathrm{OT} \text { ROOF }}-\mathrm{M}_{\mathrm{R} \text { ROOF }}\right) /\left(\mathrm{D}-6^{\prime \prime}\right)$
$\mathrm{V}_{\mathrm{i}+1 \text { panel }}=\mathrm{V}_{\mathrm{ROOF}} /\left(\mathrm{L}_{1}+\mathrm{L}_{\max }\right)$
$\mathrm{V}_{\mathrm{i}+1 \text { plate }}=\mathrm{V}_{\mathrm{ROOF}} / \mathrm{D}$
$\mathrm{M}_{\mathrm{OTi}}=\left[\left(\mathrm{V}_{\mathrm{i}+1}+\mathrm{V}_{\mathrm{ROOF}}\right) \times \mathrm{H}_{\mathrm{i}}\right]+\mathrm{M}_{\mathrm{OT} \text { ROOF }}$
$\mathrm{M}_{\mathrm{Ri}}=0.6 \times\left(\mathrm{W}_{\mathrm{i}+1}+\mathrm{W}_{\mathrm{ROOF}}\right) \times \mathrm{D}^{2} / 2$
$\mathrm{HD}_{\mathrm{i}}=\left(\mathrm{M}_{\mathrm{OTi}}-\mathrm{M}_{\mathrm{Rli}}\right) /\left(\mathrm{D}-6^{\prime \prime}\right)$
$\mathrm{V}_{\mathrm{i} \text { panel }}=\left(\mathrm{V}_{\mathrm{ROOF}}+\mathrm{V}_{\mathrm{i}+1}\right) /\left(\mathrm{L}_{1}+\mathrm{L}_{\max }\right)$
$\mathrm{V}_{\mathrm{i} \text { plate }}=\left(\mathrm{V}_{\mathrm{ROOF}}+\mathrm{V}_{\mathrm{i}+1}\right) / \mathrm{D}$

FORCE TRANSFER AROUND WINDOW CALCULATION (CANTILEVER PIER METHOD)

$\mathrm{V}_{\mathrm{h}}=\mathrm{V}_{\mathrm{i} \text { panel }} \times \mathrm{L}_{\text {max }}$
$\mathrm{V}_{\mathrm{v}}=\mathrm{HD}_{\mathrm{i}}$
$\mathbf{V}_{\mathbf{v}} \quad \mathrm{T}_{\mathrm{h}}=\mathrm{V}_{\mathrm{h}}\left(\mathrm{H}_{\mathrm{w}} / 2+\mathrm{H}_{\mathrm{s}}\right) / \mathrm{H}_{\mathrm{s}}$
$T_{v}=$ Is resisted by the continuous stud adjacent to the window.

LONGITUDE

ONE TWENTY ${ }^{\circ}$
ENGINEERING \& DESIGN

Supplementary Calculations for the following:
~ Hold-down anchor design/calculations
~ Hand-rail calculations (wood/concrete)

- Balloon framed stud design
~ Ledger Calculations/Data
- Knee Brace

Hold-down anchor design calculations

Company:	L120 Engineering \& Design	Date:	$5 / 3 / 2018$
Engineer:	MRT	Page:	$1 / 4$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB_H
Diameter (inch): 0.625
Effective Embedment depth, hef (inch): 4.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 6.13
$\mathrm{C}_{\text {min }}$ (inch): 1.38
$\mathrm{S}_{\text {min }}$ (inch): 2.50

Project description:
Location:
Fastening description:

5/8" DIA Anchor

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: $\mathrm{U}=0.9 \mathrm{D}+1.0 \mathrm{E}$
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied
Ductility section for shear: 17.2.3.5.2 not applicable
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: Yes
<Figure 1>

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V},} 1.0$
Reinforcement condition: A tension, A shear
Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Yes
Build-up grout pad: No

Company:	L120 Engineering \& Design	Date:	$5 / 3 / 2018$
Engineer:	MRT	Page:	$2 / 4$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB5H (5/8"Ø)

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Strong4tie Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	$5 / 3 / 2018$
Engineer:	MRT	Page:	$3 / 4$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $\left.V^{(} \mathrm{V}_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	2925.0	0.0	0.0	0.0
Sum	2925.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 2925
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e' $n x$ (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e' Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}(\mathrm{lb})$	ϕ	$\phi N_{\text {sa }}(\mathrm{lb})$
27120	0.75	20340

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_{b}=k_{c} \lambda_{a} \sqrt{ } f_{c}^{\prime} h_{e f}{ }^{1.5}$ (Eq. 17.4.2.2a)

k_{c}	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	$h_{e f}(\mathrm{in})$	$N_{b}(\mathrm{lb})$
24.0	1.00	2500	4.000	9600

$0.75 \phi N_{c b}=0.75 \phi\left(A_{N c} / A_{N_{c o}}\right) \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.4.2.1a)

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\right.$ in 2	$C_{a, \text { min }}($ in $)$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c \rho, N}$	$N_{b}(\mathrm{lb})$	ϕ	$0.75 \phi N_{c b}(\mathrm{lb})$
103.00	144.00	4.00	0.900	1.00	1.000	9600	0.75	3476

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$0.75 \phi N_{p n}=0.75 \phi \Psi_{c, P} N_{p}=0.75 \phi \Psi_{c, P 8} A_{\text {brg }} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{\text {brg }}\left(\right.$ in $\left.^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {pn }}(\mathrm{lb})$
1.0	2.10	2500	0.70	22029

Company:	L120 Engineering \& Design	Date:	$5 / 3 / 2018$
Engineer:	MRT	Page:	$4 / 4$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (Ib)	Design Strength, $ø N_{n}(\mathrm{lb})$	Ratio	Status
Steel	2925	20340	0.14	Pass
Concrete breakout	2925	3476	0.84	Pass (Governs)
Pullout	2925	22029	0.13	Pass

PAB5H (5/8"Ø) with hef = 4.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, $\mathrm{Nua}^{\text {(lb) }}$	$1.2 \times$ Nominal Strength, N_{n} (lb)	Ratio
Steel	2925	32544	9.0 \%
Concrete	Nominal Strength, N_{n} (lb)	Nominal Strength, N_{n} (lb)	Ratio
Concrete breakout	2925	6180	47.3\% Governs
Pullout	2925	41960	7.0 \%

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) is not satisfied since steel ratio does not govern.

12. Warnings

- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when $\mathrm{ACl} 318-14$ Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, $\Omega 0$ factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$	
Engineer:	MRT	Page:	$1 / 4$	
Project:	Hold-down Anchors			
Address:				
Phone:				
E-mail:				

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB
Diameter (inch): 0.750
Effective Embedment depth, hef (inch): 12.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 14.25
$\mathrm{C}_{\text {min }}$ (inch): 1.63
$\mathrm{S}_{\text {min }}$ (inch): 3.00

Project description:
Location:
Fastening description:

3/4" DIA Anchor

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V},} 1.0$
Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes
Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: $\mathrm{U}=0.9 \mathrm{D}+1.0 \mathrm{E}$
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied
Ductility section for shear: 17.2.3.5.2 not applicable
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: Yes
<Figure 1>


```
SIMPSON Anchor Designer \({ }^{\text {TM }}\)
Strongytie
Software
Version 2.5.6582.0
```

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$2 / 4$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB6 (3/4"Ø)

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$3 / 4$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $V\left(V_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	13050.0	0.0	0.0	0.0
Sum	13050.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}(\mathrm{lb})$	ϕ	$\phi N_{\text {sa }}(\mathrm{lb})$
19370	0.75	14528

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$0.75 \phi N_{p n}=0.75 \phi \Psi_{c, P} N_{p}=0.75 \phi \Psi_{c, P 8} A_{\text {brg }} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {pn }}(\mathrm{lb})$
1.0	3.53	2500	0.70	37107

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$4 / 4$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$0.75 \phi N_{s b}=0.75 \phi\left\{\left(1+c_{a 2} / C_{a 1}\right) / 4\right\}\left(160 c_{a 1} \sqrt{ } A_{b \text { brg }}\right) \lambda \sqrt{ } f_{c}^{\prime}($ Sec. 17.3.1 \& Eq. 17.4.4.1)

$C_{a 1}($ in $)$	$C_{a 2}($ in $)$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {sbg }}(\mathrm{lb})$
4.00	6.00	3.53	1.00	2500	0.75	21149

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, $\mathrm{Nua}_{\mathrm{a}}(\mathrm{Ib})$	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	$\mathbf{1 3 0 5 0}$	$\mathbf{1 4 5 2 8}$	$\mathbf{0 . 9 0}$	Pass (Governs)
Pullout	13050	37107	0.35	Pass
Side-face blowout	13050	21149	0.62	Pass

PAB6 (3/4"Ø) with hef = $\mathbf{1 2 . 0 0 0}$ inch meets the selected design criteria.
ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, $\mathrm{Nua}^{(\mathrm{Ib})}$	$1.2 \times$ Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Ratio	
Steel	$\mathbf{1 3 0 5 0}$	$\mathbf{2 3 2 4 4}$	$\mathbf{5 6 . 1 \%}$	Governs
Concrete	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Ratio	
Pullout	13050	70680	18.5%	
Side-face blowout	13050	37598	34.7%	

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) satisfied since steel ratio governs and the steel element is ductile.

12. Warnings

- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACl 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$1 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB_H
Diameter (inch): 0.875
Effective Embedment depth, hef (inch): 12.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 14.38
$\mathrm{C}_{\text {min }}$ (inch): 1.75
$\mathrm{S}_{\text {min }}$ (inch): 3.50

Project description:
Location:
Fastening description:

7/8" DIA Anchor

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V},} 1.0$
Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes
Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: $\mathrm{U}=0.9 \mathrm{D}+1.0 \mathrm{E}$
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied
Ductility section for shear: 17.2.3.5.2 not applicable
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>


```
SIMPSON Anchor Designer \({ }^{\text {TM }}\)
Strongytie
Software
Version 2.5.6582.0
```

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$2 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

6.00

Recommended Anchor
Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB7H (7/8"Ø)

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$3 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $\sqrt{\left(V_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})}$
1	18000.0	0.0	0.0	0.0
Sum	18000.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e' $n x$ (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}(\mathrm{lb})$	ϕ	$\phi N_{\text {sa }}(\mathrm{lb})$
55440	0.75	41580

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$0.75 \phi N_{p n}=0.75 \phi \Psi_{c, P} N_{p}=0.75 \phi \Psi_{c, P 8} A_{\text {brg }} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {pn }}(\mathrm{lb})$
1.0	4.07	2500	0.70	42683

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$4 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$0.75 \phi N_{\text {sb }}=0.75 \phi\left\{\left(1+c_{a 2} / C_{a 1}\right) / 4\right\}\left(160 c_{a 1} \sqrt{ } A_{b \text { brg }}\right) \lambda \sqrt{ } f_{c}^{\prime}(\mathrm{Sec} .17 .3 .1 \& E q .17 .4 .4 .1)$

$C_{a 1}($ in $)$	$C_{\mathrm{a} 2}(\mathrm{in})$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {sbg }}(\mathrm{lb})$
4.00	6.00	4.07	1.00	2500	0.75	22682

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, $\mathrm{Naa}^{(\mathrm{Ib})}$	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	18000	41580	0.43	Pass
Pullout	18000	42683	0.42	Pass
Side-face blowout	$\mathbf{1 8 0 0 0}$	$\mathbf{2 2 6 8 2}$	$\mathbf{0 . 7 9}$	Pass (Governs)

PAB7H (7/8"Ø) with hef = 12.000 inch meets the selected design criteria.
ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, $\mathrm{Nua}^{(\mathrm{Ib})}$	$1.2 \times$ Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Ratio	
Steel	18000	66528	27.1%	
Concrete				
Pullout	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	
Side-face blowout	18000	81300	22.1%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) is not satisfied since steel ratio does not govern.

SIMPSON Anchor Designer ${ }^{\text {TM }}$
Strongytic
Software
Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$5 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when $\mathrm{ACl} 318-14$ Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, $\Omega 0$ factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$1 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

Project description:
Location:
Fastening description:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB_H
Diameter (inch): 1.000
Effective Embedment depth, hef (inch): 15.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 17.63
$\mathrm{C}_{\text {min }}$ (inch): 1.88
$\mathrm{S}_{\text {min }}$ (inch): 4.00

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V},} 1.0$
Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes
Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: $\mathrm{U}=0.9 \mathrm{D}+1.0 \mathrm{E}$
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied
Ductility section for shear: 17.2.3.5.2 not applicable
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>


```
SIMPSON Anchor Designer \({ }^{\text {TM }}\)
Strongytie
Software
Version 2.5.6582.0
```

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$2 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

6.00

Recommended Anchor
Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB8H (1"Ø)

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$3 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $V\left(V_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	22500.0	0.0	0.0	0.0
Sum	22500.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}(\mathrm{lb})$	ϕ	$\phi N_{\text {sa }}(\mathrm{lb})$
72720	0.75	54540

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$0.75 \phi N_{p n}=0.75 \phi \Psi_{c, P} N_{p}=0.75 \phi \Psi_{c, P 8} A_{\text {brg }} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {pn }}(\mathrm{lb})$
1.0	5.15	2500	0.70	54117

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$4 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$0.75 \phi N_{\text {sb }}=0.75 \phi\left\{\left(1+c_{a 2} / C_{a 1}\right) / 4\right\}\left(160 c_{a 1} \sqrt{ } A_{b \text { brg }}\right) \lambda \sqrt{ } f_{c}^{\prime}(\mathrm{Sec} .17 .3 .1 \& E q .17 .4 .4 .1)$

$C_{a 1}($ in $)$	$C_{a 2}($ in $)$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {sbg }}(\mathrm{lb})$
4.00	6.00	5.15	1.00	2500	0.75	25540

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, $\mathrm{Naa}^{(\mathrm{Ib})}$	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	22500	54540	0.41	Pass
Pullout	22500	54117	0.42	Pass
Side-face blowout	$\mathbf{2 2 5 0 0}$	$\mathbf{2 5 5 4 0}$	$\mathbf{0 . 8 8}$	Pass (Governs)

PAB8H (1"Ø) with hef $=15.000$ inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) Calculations for Ductility requirement for tension load

Stee	Factored Load, $\mathrm{Nua}^{(\mathrm{Ib})}$	$1.2 \times$ Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	
Steel	22500	87264	25.8%	
Concrete				
Pullout	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	
Side-face blowout	22500	103080	21.8%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) is not satisfied since steel ratio does not govern.

SIMPSON Anchor Designer ${ }^{\text {TM }}$
Strong4tie
Software
Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$5 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when $\mathrm{ACl} 318-14$ Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, $\Omega 0$ factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$1 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

Project description:
Location:
Fastening description:

1 1/8" DIA Anchor

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB
Diameter (inch): 1.125
Effective Embedment depth, hef (inch): 15.000
Anchor category: -
Anchor ductility: Yes
$\mathrm{h}_{\text {min }}$ (inch): 17.75
$\mathrm{C}_{\text {min }}$ (inch): 2.13
$\mathrm{S}_{\text {min }}$ (inch): 4.50

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V},} 1.0$
Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes
Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: $\mathrm{U}=0.9 \mathrm{D}+1.0 \mathrm{E}$
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied
Ductility section for shear: 17.2.3.5.2 not applicable
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>


```
SIMPSON Anchor Designer \({ }^{\text {TM }}\)
Strongytie
Software
Version 2.5.6582.0
```

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$2 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB9 (1 1/8"Ø)

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$3 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $V\left(V_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	27900.0	0.0	0.0	0.0
Sum	27900.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e' $n x$ (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}$ (lb)
44255	0.75	33191

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$0.75 \phi N_{p n}=0.75 \phi \Psi_{c, P} N_{p}=0.75 \phi \Psi_{c, P 8} A_{\text {brg }} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {pn }}(\mathrm{lb})$
1.0	6.37	2500	0.70	66885

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$4 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$0.75 \phi N_{\text {sb }}=0.75 \phi\left\{\left(1+c_{a 2} / C_{a 1}\right) / 4\right\}\left(160 c_{a 1} \sqrt{ } A_{b \text { brg }}\right) \lambda \sqrt{ } f_{c}^{\prime}(\mathrm{Sec} .17 .3 .1 \& E q .17 .4 .4 .1)$

$C_{a 1}($ in $)$	$C_{a 2}($ in $)$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {sbg }}(\mathrm{lb})$
4.00	6.00	6.37	1.00	2500	0.75	28394

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, $\mathrm{Naa}^{(\mathrm{Ib})}$	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	27900	33191	0.84	Pass
Pullout	27900	66885	0.42	Pass
Side-face blowout	$\mathbf{2 7 9 0 0}$	$\mathbf{2 8 3 9 4}$	$\mathbf{0 . 9 8}$	Pass (Governs)

PAB9 (1 1/8"Ø) with hef = 15.000 inch meets the selected design criteria.

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, $\mathrm{Nua}^{(\mathrm{Ib})}$	$1.2 \times$ Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Ratio	
Steel	27900	53106	52.5%	
Concrete				
Pullout	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	
Side-face blowout	27900	127400	21.9%	Governs

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) is not satisfied since steel ratio does not govern.

SIMPSON Anchor Designer ${ }^{\text {TM }}$
Stronghtie
Software
Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$5 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when $\mathrm{ACl} 318-14$ Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, $\Omega 0$ factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$1 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

Project description:
Location:
Fastening description:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place
Material: AB
Diameter (inch): 1.250
Effective Embedment depth, $h_{\text {ef }}$ (inch): 15.000
Anchor category: -
Anchor ductility: Yes
$h_{\text {min }}$ (inch): 18.00
$\mathrm{C}_{\text {min }}$ (inch): 2.25
$\mathrm{S}_{\text {min }}$ (inch): 5.00

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 18.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V},} 1.0$
Reinforcement condition: A tension, A shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: Yes Ignore concrete breakout in tension: Yes Ignore concrete breakout in shear: No Ignore 6do requirement: Yes
Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: $\mathrm{U}=0.9 \mathrm{D}+1.0 \mathrm{E}$
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: 17.2.3.4.3 (a) (iii)-(vi) is satisfied
Ductility section for shear: 17.2.3.5.2 not applicable
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: Yes

<Figure 1>


```
SIMPSON Anchor Designer \({ }^{\text {TM }}\)
Strongytie
Software
Version 2.5.6582.0
```

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$2 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: PAB Pre-Assembled Anchor Bolt - PAB10 (1 1/4"Ø)

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$3 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $V_{\text {uay }}(\mathrm{lb})$	Shear load combined, $V\left(V_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	31500.0	0.0	0.0	0.0
Sum	31500.0	0.0	0.0	0.0

Maximum concrete compression strain (\%): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 0
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x-axis, e'Nx (inch): 0.00
Eccentricity of resultant tension forces in y-axis, e'ny (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}(\mathrm{lb})$
56200	0.75	42150

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$0.75 \phi N_{p n}=0.75 \phi \Psi_{c, P} N_{p}=0.75 \phi \Psi_{c, P 8} A_{\text {brg }} f_{c}^{\prime}($ Sec. 17.3.1, Eq. 17.4.3.1 \& 17.4.3.4)

$\Psi_{c, P}$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {pn }}(\mathrm{lb})$
1.0	8.39	2500	0.70	88137

Company:	L120 Engineering \& Design	Date:	1/14/2018
Engineer:	MRT	Page:	$4 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

7. Side-Face Blowout Strength of Anchor in Tension (Sec. 17.4.4)

$0.75 \phi N_{\text {sb }}=0.75 \phi\left\{\left(1+c_{a 2} / C_{a 1}\right) / 4\right\}\left(160 c_{a 1} \sqrt{ } A_{b \text { brg }}\right) \lambda \sqrt{ } f_{c}^{\prime}(\mathrm{Sec} .17 .3 .1 \& E q .17 .4 .4 .1)$

$C_{a 1}($ in $)$	$C_{a 2}($ in $)$	$A_{\text {brg }}\left(\mathrm{in}^{2}\right)$	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	ϕ	$0.75 \phi N_{\text {sbg }}(\mathrm{lb})$
4.00	6.00	8.39	1.00	2500	0.75	32594

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, $\mathrm{Naa}^{(\mathrm{Ib})}$	Design Strength, $\varnothing \mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	Status
Steel	31500	42150	0.75	Pass
Pullout	31500	88137	0.36	Pass
Side-face blowout	$\mathbf{3 1 5 0 0}$	$\mathbf{3 2 5 9 4}$	$\mathbf{0 . 9 7}$	Pass (Governs)

PAB10 (1 1/4"Ø) with hef = 15.000 inch meets the selected design criteria.
ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) Calculations for Ductility requirement for tension load

Steel	Factored Load, $\mathrm{Nua}^{(\mathrm{Ib})}$	$1.2 \times$ Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Ratio	
Steel	31500	67440	46.7%	
Concrete				
Pullout	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{Ib})$	Nominal Strength, $\mathrm{N}_{\mathrm{n}}(\mathrm{lb})$	Ratio	
Side-face blowout	$\mathbf{3 1 5 0 0}$	167880	18.8%	

ACI 318-14 Section 17.2.3.4.3(a) (i) \& (ii) is not satisfied since steel ratio does not govern.

SIMPSON Anchor Designer ${ }^{\text {TM }}$
Strongytie
Software
Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	$1 / 14 / 2018$
Engineer:	MRT	Page:	$5 / 5$
Project:	Hold-down Anchors		
Address:			
Phone:			
E-mail:			

12. Warnings

- Minimum spacing and edge distance requirement of 6 da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Concrete breakout strength in tension has not been evaluated against applied tension load(s) per designer option. Refer to ACI 318 Section 17.3.2.1 for conditions where calculations of the concrete breakout strength may not be required.
- Brittle failure governs for tension. Governing anchor failure mode is brittle failure. Attachment shall be designed to satisfy the requirements of ACI 318-14 Section 17.2.3.4.3 for structures assigned to Seismic Design Category C, D, E, or F when the component of the strength level earthquake force applied to anchors exceeds 20 percent of the total factored anchor force associated with the same load combination. In case when $\mathrm{ACl} 318-14$ Sections 17.2.3.4.3 (a)(iii) to (vi), (b), (c) or (d) is satisfied for tension loading, select appropriate checkbox from Inputs tab to disable this message. Alternatively, $\Omega 0$ factor can be entered to satisfy ACI 318-14 Section 17.2.3.4.3(d) to increase the earthquake portion of the loads as required.
- Per designer input, the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination. Therefore the ductility requirements of ACI 318 17.2.3.5.2 for shear need not be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.

Hand-rail Calculations

\qquad

LONGITUDE

ONE TWENTY
ENGINEERING \& DESIGN

sUbJECT GuardRail Design

\qquad
DATE

End Post Anchor Bolt Design:

$\mathrm{Pv}=25 \mathrm{lbs}$
$\mathrm{Ph}=200 \mathrm{lbs}$
h1 = 46"
h2 $=5.5^{\prime \prime}$
$e=1.5^{\prime \prime}$
Anchor Moment $\mathrm{Mx}=\mathrm{Pv}(\mathrm{e})+\mathrm{Ph}(\mathrm{h} 1+\mathrm{h} 2 / 2)$

$$
\begin{aligned}
& =25 \times 1.5+200 \times(46+5.5 / 2) \\
& =9788 \# "
\end{aligned}
$$

$$
M y=200 \# \times 4.5^{\prime \prime}=900 \# "
$$

Anchor Forces $\mathrm{T}=[\mathrm{Pv}(\mathrm{e})+\mathrm{Ph}(\mathrm{h} 1+\mathrm{h} 2)] / \mathrm{h} 2+\mathrm{My} / 1.5 "$

$$
=2480 \text { \# }
$$

Anchor Forces C = T-Ph

$$
\text { = } 2280 \text { \# }
$$

Each Bolt Force $\mathrm{T}=\mathrm{T} / 2=1240$ \#

$$
V=P v / 4+P v \times 4.5 " /(4 \times 2.85 ")=16 \#
$$

Wood Lag Screw: 3/8" dia with 3" min. embed into DF beam.
Withdrawal $\mathrm{Wa}=305 \# / " \times 1.6 \times 3 "=1460 \#>T \quad$ O.K. Shear $\mathrm{Za}=180 \# \times 1.6=280 \#$ O.K.

Plate Thickness $=1 / 2^{*}$
Standoff $=1 / 2^{2}$

LONGITUDE

ONE TWENTY०
ENGINEERING \& DESIGN

subject GuardRail Design

\qquad DATE \qquad

Middle Post Anchor Bolt Design:
$\mathrm{Pv}=25 \mathrm{lbs}$
$\mathrm{Ph}=250 \mathrm{lbs}$
$h 1=46 "$
h2 = 5.5"
$e=1.5^{\prime \prime}$

Anchor Moment $\mathrm{M}=\mathrm{Pv}(\mathrm{e})+\mathrm{Ph}(\mathrm{h} 1+\mathrm{h} 2 / 2)$

$$
\begin{aligned}
& =25 \times 1.5+250(46+5.5 / 2) \\
& =12,250
\end{aligned}
$$

Anchor Forces $T=[P v(e)+P h(h 1+h 2)] / h 2$

$$
=2347 \text { \# }
$$

Anchor Forces C = T - Ph

$$
=2147 \#
$$

Each Bolt Force $\mathrm{T}=\mathrm{T} / 2=1174$ \#

$$
V=P v / 4=6 \#
$$

Wood Lag Screw: 3/8" dia with $3^{\prime \prime}$ min. embed into DF beam.
Withdrawal $\mathrm{Wa}=305$ \#/" $\times 1.6 \times 3 "=1460$ \# > T
O.K. Shear $Z a=180 \# x 1.6=280 \#$ O.K.

\qquad

LONGITUDE

 sUbJECT GuardRail Design\qquad DATE \qquad

Mounting Plate Design:

Apply Forces: $\mathrm{Mx}=9788$ \#"
My = 900 \#"
$\mathrm{T}=200$ \#
$\mathrm{V}=25$ \#

Try 1/2" thick Plate
Plate Bending Stress: $\mathrm{fbx}=\mathrm{Mx} / 2 / \mathrm{Sx}$

$$
\begin{aligned}
= & 9788 / 2 /\left(1 / 4 \times 5^{\prime \prime} \times(1 / 2)^{\wedge}\right) \\
& =15,660 \mathrm{psi} \\
\mathrm{fby} & =\mathrm{My} / \mathrm{Sy} \\
& =900 /\left(1 / 4 \times 7^{\prime \prime} \times(1 / 2)^{\wedge} 2\right) \\
& =2,057 \mathrm{psi}
\end{aligned}
$$

For Plate $6061-\mathrm{T} 6 \mathrm{Fb}=35 \mathrm{ksi} / 1.65$

$$
=21,200 \mathrm{psi}>\mathrm{fb} \quad \text { O.K. }
$$

Plate Combined Stress
$\mathrm{fbx} / \mathrm{Fb}+\mathrm{fby} / \mathrm{Fb}=0.83<1.0 \quad$ O.K.

Page 1 of 1	Fastenal Product Standard	REV-00
Date: January 11, 2012	FASTEMAI	LAG.HDG

Hex Lag Screws, Hot Dipped Galvanized

The information below lists the required dimensional, chemical and physical characteristics of the products in this purchase order. If the order received does not meet these requirements, it may result in a supplier corrective action request, which could jeopardize your status as an approved vendor. Unless otherwise specified, all referenced consensus standards must be adhered to in their entirety.

Diameter	E		F		G		H	
	Body Diameter		Width Across Flats		Width Across Corners		Height	
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.
10	.199	.178	.281	.271	.323	.309	.140	.110
$1 / 4$.260	.237	.438	.425	.505	.484	.188	.150
$5 / 16$.324	.298	.500	.484	.577	.552	.235	.195
$3 / 8$.388	.360	.562	.544	.650	.620	.268	.226
$7 / 16$.452	.421	.625	.603	.722	.687	.316	.272
$1 / 2$.515	.482	.750	.725	.866	.826	.364	.302
$5 / 8$.642	.605	.938	.906	1.083	1.033	.444	.378
$3 / 4$.768	.729	1.125	1.088	1.299	1.240	.524	.455
$7 / 8$.895	.852	1.312	1.269	1.516	1.447	.604	.531
1	1.022	.976	1.500	1.450	1.732	1.653	.700	.591
$11 / 8$	1.149	1.098	1.688	1.631	1.949	1.859	.780	.658
$11 / 4$	1.277	1.223	1.875	1.812	2.165	2.066	.876	.749

Dimensions above are prior to coating

Specification Requirements:

- Dimensions:
- Material:
- Thread requirements:
- Coating:

ASME B18.2.1.
Per ASTM A307, Grade A
The minimum thread length must be equal to one half the nominal Screw length plus $1 / 2 \prime$ ", or 6 inch, whichever is shorter. Screws too short to conform to this formula must be threaded as close to the head as possible.
Hot Dip Zinc per ASTM F2329 or in accordance with Class C of ASTM A153 and Class D for 3/8" diameter and less.

SUBJECT
BY
DATE \qquad

Table 2.3.2 Frequently Used Load Duration Factors, $\mathbf{C}_{D^{1}}$

Load Duration	$\mathbf{C}_{\mathbf{D}}$	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact 2	2.0	Impact Load

1. Load duration factors shall not apply to reference modulus of elasticity, E, reference modulus of elasticity for beam and column stability, $\mathrm{E}_{- \text {, }}$, nor to reference compression perpendicular to grain design values,
F , , based on a deformation limit.
2. Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with water-borne preservatives (see Reference 30), or fire retardant chemicals. The impact load duration factor
shall not apply to connections.

2.3.3 Temperature Factor, $\mathbf{C}_{\mathbf{t}}$

Reference design values shall be multiplied by the temperature factors, \mathbf{C}_{6}, in Table 2.3 .3 for structural members that will experience sustained exposure to elevated temperatures up to $150^{\circ} \mathrm{F}$ (see Appendix C).

2.3.4 Fire Retardant Treatment

The effects of fire retardant chemical treatment on strength shall be accounted for in the design. Adjusted design values, including adjusted connection design values, for lumber and structural glued laminated timber pressure-treated with fire retardant chemicals shall be obtained from the company providing the treatment and redrying service. Load duration factors greater than 1.6 shall not apply to structural members pressure-treated with fire retardant chemicals (see Table 2.3.2).

2.3.5 Format Conversion Factor, $\mathrm{K}_{\text {F (LRFD }}$ Only)

For LRFD, reference design values shall be multiplied by the format conversion factor, K_{F}, specified in Table 2.3.5. The format conversion factor, K_{F}, shall not apply for designs in accordance with ASD methods specified herein.

2.3.6 Resistance Factor, ϕ (LRFD Only)

For LRFD, reference design values shall be multiplied by the resistance factor, ϕ, specified in Table 2.3.6. The resistance factor, ϕ, shall not apply for designs in accordance with ASD methods specified herein.

2.3.7 Time Effect Factor, λ (LRFD Only)

For LRFD, reference design values shall be multiplied by the time effect factor, λ, specified in Appendix N.3.3. The time effect factor, λ, shall not apply for designs in accordance with ASD methods specified herein.

Table 2.3.3 Temperature Factor, $\mathbf{C}_{\mathbf{t}}$
$\left.\begin{array}{lccccc}\hline & & & & \mathbf{C}_{t} \\ \hline \begin{array}{l}\text { Reference Design } \\ \text { Values }\end{array} & \begin{array}{c}\text { In-Service } \\ \text { Moisture } \\ \text { Conditions }\end{array}\end{array}\right)$

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood 1-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1 .5 respectively.
\qquad DATE \qquad

Table 11.3.1 Applicability of Adjustment Factors for Connections

		ASD Only	ASD and LRFD									$\begin{gathered} \text { LRFD } \\ \text { Only } \end{gathered}$			
Lateral Loads															
Dowel-type Fasteners (e.g. bolts, lag screws, wood screws, nails, spikes, drift bolts, \& drift pins)	$\mathrm{Z}=\mathrm{Z}$ x		C_{D}	C_{M}	C_{1}	C_{g}	$\mathrm{C}_{\text {A }}$	-	$\mathrm{C}_{\text {eg }}$	-	$\mathrm{C}_{\text {di }}$	$\mathrm{C}_{\text {tn }}$	3.32	0.65	λ
Split Ring and Shear Plate	$\mathrm{P}=\mathrm{P} \mathrm{x}$	C_{D}	C_{M}	C_{1}	C_{g}	$\mathrm{C}_{\text {A }}$	$\mathrm{C}_{\text {d }}$	-	$\mathrm{C}_{\text {st }}$	-	-	3.32	0.65	λ	
Connectors	$\mathrm{Q}^{\prime}=\mathrm{Q} x$	C_{D}	C_{M}	C_{1}	C_{g}	$\mathrm{C}_{\text {A }}$	$\mathrm{C}_{\text {d }}$	-	-	-	-	3.32	0.65	λ	
Timber Rivets	$\mathrm{P}=\mathrm{P} \mathrm{x}$	C_{D}	C_{M}	C_{4}	-		-	-	Cst^{4}	-	-	3.32	0.65	λ	
	$\mathrm{Q}=\mathrm{Q} x$	C_{D}	C_{M}	C_{6}		$\mathrm{C}_{4}{ }^{\text {S }}$	-	-	$\mathrm{C}_{3 t}{ }^{4}$	-	-	3.32	0.65	λ	
Spike Grids	$\mathrm{Z}=\mathrm{Z}$ x	C_{D}	C_{M}	C_{1}	-	C_{4}	-	-	-	-	-	3.32	0.65	λ	
Withdrawal Loads															
Nails, spikes, lag screws, wood screws, \& drift pins	$\mathrm{W}^{\prime}=\mathrm{W}$ x	C_{D}	Cm^{2}	$\mathrm{C}_{\text {t }}$	-	.	-	$\mathrm{C}_{\text {eg }}$	-	-	$\mathrm{C}_{\text {tn }}$	3.32	0.65	λ	

1. The load duration factor, C_{D}, shall not exceed 1.6 for connections (see 11.3.2).
2. The wet service factor, C_{m}, shall not apply to toe-nails loaded in withdrawal (see 12.54 .1).
3. Specific information concerning geometry factors C_{A}, penetration depth factors $\mathrm{C}_{\mathrm{d}_{1}}$ end grain factors, C_{c}, metal side plate factors, C_{a}, diaphragm factors, C_{a}, and toe-nail factors, C_{im} is provided in Chapters 12, 13, and 14.
4. The metal side plate factor, C_{π}, is only applied when rivet capacity ($\mathrm{P}_{r}, \mathrm{Q}_{\mathrm{t}}$) controls (see Chapter 14).
5. The geometry factor, C_{A}, is only applied when wood capacity, Q_{w}, controls (see Chapter 14).

11.3.2 Load Duration Factor, C_{D} (ASD Only)

Reference design values shall be multiplied by the load duration factors, $\mathrm{C}_{\mathrm{D}} \leq 1.6$, specified in 2.3.2 and Appendix B, except when the capacity of the connection is controlled by metal strength or strength of concrete/masonry (see 11.2.3, 11.2.4, and Appendix B.3). The impact load duration factor shall not apply to connections.

11.3.3 Wet Service Factor, \mathbf{C}_{m}

Reference design values are for connections in wood seasoned to a moisture content of 19% or less and used under continuously dry conditions, as in most covered structures. For connections in wood that is unsea-
soned or partially seasoned, or when connections are exposed to wet service conditions in use, reference design values shall be multiplied by the wet service factors, C_{m}, specified in Table 11.3.3.

11.3.4 Temperature Factor, $\mathbf{C}_{\mathbf{t}}$

Reference design values shall be multiplied by the temperature factors, C_{i}, in Table 11.3.4 for connections that will experience sustained exposure to elevated temperatures up to $150^{\circ} \mathrm{F}$ (see Appendix C).

ONE TWENTYㅁ

ENGINEERING \& DESIGN
\qquad

Table 12.2A Lag Screw Reference Withdrawal Design Values, \mathbf{W}_{1}
Tabulated withdrawal design values (\mathbf{W}) are in pounds per inch of thread penetration into side grain of wood member.
Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1).

Specific Gravity,	Lag Screw Diameter, D										
$\mathrm{G}^{\mathbf{2}}$	1/4"	5/16"1	3/8 ${ }^{\prime \prime}$	7/16"	1/2"	5/8 ${ }^{\prime \prime}$	3/4"	7/8 ${ }^{\prime \prime}$	1"	1-1/8 ${ }^{\prime \prime}$	1-1/4"
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
> 0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	ked	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

1. Tabulated withdrawal design values, W , for lag serew connections shall be multiplied by all applicable adjustment factors (see Table 11,3.1).
2. Specific gravity, G, shall be determined in accordance with Table 12.3 .3 A .
12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in $\mathrm{lbs} / \mathrm{in}$. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, p_{t}, into the wood member.
12.2.3.3 The reference withdrawal design value, in $\mathrm{lbs} / \mathrm{in}$. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W^{\prime}.

$$
\mathrm{W}=1800 \mathrm{G}^{2} \mathrm{D}
$$

(12.2-4)
12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in $\mathrm{Ibs} / \mathrm{in}$. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_{v}, into the wood member.
12.2.3.5 Nails and spikes shall not be loaded in withdrawal from end grain of wood ($\mathrm{C}_{\mathrm{eg}}=0.0$).
12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in crosslaminated timber ($\mathrm{C}_{\mathrm{eg}}=0.0$).

12-2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W, for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

ONE TWENTY゚
ENGINEERING \& DESIGN

PROJECT

Table 12.3.3A Assigned Specific Gravities

Species Combination	Specific ${ }^{1}$ Gravity, G	Species Combinations of MSR and MEL Lumber	Specific ${ }^{1}$ Gravity, G
Alaska Cedar	0.47	Douglas Fir-Larch	
Alaska Hemlock	0.46	$\mathrm{E}=1,900,000$ psi and lower grades of MSR	0.50
Alaska Spruce	0.41	$\mathrm{E}=2,000,000 \mathrm{psi}$ grades of MSR	0.51
Alaska Yellow Cedar	0.46	$\mathrm{E}=2,100,000$ psi grades of MSR	0.52
Aspen	0.39	$\mathrm{E}=2,200,000 \mathrm{psi}$ grades of MSR	0.53
Balsam Fir	0.36	$\mathrm{E}=2,300,000$ psi grades of MSR	0.54
Beech-Birch-Hickory	0.71	$\mathrm{E}=2,400,000 \mathrm{psi}$ grades of MSR	0.55
Coast Sitka Spruce	0.39	Douglas Fir-Larch (North)	
Cottonwood	0.41	$E=1,900,000$ psi and lower grades of MSR and MEI	0.49
Douglas Fir-Larch	0.50	$E=2,000,000$ psi to $2,200,000$ psi grades of MSR and MEL	0.53
Douglas Fir-Larch (North)	0.49	$\mathrm{E}=2,300,000$ psi and higher grades of MSR and MEL	0.57
Douglas Fir-South	0.46	Douglas Fir-Larch (South)	
Eastem Hemlock	0.41	$\mathrm{E}=1,000,000$ psi and higher grades of MSR	0.46
Eastem Hemlock-Balsam Fir	0.36	Engelmann Spruce-Lodgepole Pine	
Eastem Hemlock-Tamarack	0.41	$E=1,400,000$ psi and lower grades of MSR	0.38
Eastem Hemlock-Tamarack (North)	0.47	$E=1,500,000$ psi and higher grades of MSR	0.46
Eastem Softwoods	0.36	Hem-Fir	
Eastem Spruce	0.41	$\mathrm{E}=1,500,000 \mathrm{psi}$ and lower grades of MSR	0.43
Eastem White Pine	0.36	$\mathrm{E}=1,600,000 \mathrm{psi}$ grades of MSR	0.44
Engelmann Spruce-Lodgepole Pine	0.38	$\mathrm{E}=1,700,000$ psi grades of MSR	0.45
Hem-Fir	0.43	$\mathrm{E}=1,800,000$ psi grades of MSR	0.46
Hem-Fir (North)	0.46	$\mathrm{E}=1,900,000$ psi grades of MSR	0.47
Mixed Maple	0.55	$\mathrm{E}=2,000,000$ psi grades of MSR	0.48
Mixed Oak	0.68	$\mathrm{E}=2,100,000$ psi grades of MSR	0.49
Mixed Southern Pine	0.51	$\mathrm{E}=2,200,000$ psi grades of MSR	0.50
Mountain Hemlock	0.47	$\mathrm{E}=2,300,000 \mathrm{psi}$ grades of MSR	0.51
Northern Pine	0.42	$\mathrm{E}=2,400,000$ psi grades of MSR	0.52
Northern Red Oak	0.68	Hem-Fir (North)	
Northern Species	0.35	$\mathrm{E}=1,000,000$ psi and higher grades of MSR and MEL	0.46
Northern White Cedar	0.31	Southern Pine	
Ponderosa Pine	0.43	$\mathrm{E}=1,700,000 \mathrm{psi}$ and lower grades of MSR and MEL.	0.55
Red Maple	0.58	$\mathrm{E}=1,800,000$ psi and higher grades of MSR and MEL	0.57
Red Oak	0.67	Spruce-Pine-Fir	
Red Pine	0.44	$\mathrm{E}=1,700,000$ psi and lower grades of MSR and MEL	0.42
Redwood, close grain	0.44	$E=1,800,000$ psi and 1,900,000 grades of MSR and MEL	0.46
Redwood, open grain	0.37	$\mathrm{E}=2,000,000$ psi and higher grades of MSR and MFL	0.50
Sitka Spruce	0.43	Spruce-Pine-Fir (South)	
Southern Pine	0.55	$E=1,100,000$ psi and lower grades of MSR	0.36
Spruce-Pinc-Fir	0.42	$\mathrm{E}=1,200,000 \mathrm{psi}$ tol, 900,000 psi grades of MSR	0.42
Spruce-Pine-Fir (South)	0.36	$\mathrm{E}=2,000,000 \mathrm{psi}$ and higher grades of MSR	0.50
Western Cedars	0.36	Westem Cedars	
Westem Cedars (North)	0.35	$\mathrm{E}=1,000,000 \mathrm{psi}$ and higher grades of MSR	0.36
Western Hemlock	0.47	Westem Woods	
Western Hemlock (North)	0.46	$\mathrm{E}=1,000,000$ psi and higher grades of MSR	0.36
Western White Pine	0.40		
Western Woods	0.36		
White Oalk	0.73		
Yellow Poplar	0.43		

[^0] (see Table 4C, Footnote 2).

ENGINEERING \& DESIGN
BY
DATE
/ /

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
2. Tabulated lateral design values, \mathbf{Z}, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with serew axis perpendicular to wood fibers; screw penetration, p , into the main member equal to 8 D ; dowel bearing strengths, F_{e}, of 61,850 psi for ASTM A 653 , Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths, $F_{\text {ybo }}$ of 70,000 psi for $D=1 / 4^{\prime \prime}, 60,000$ psi for $D=5 / 16^{\prime \prime}$, and $45,000 \mathrm{psi}$ for $\mathrm{D} \geq 3 / 8^{\prime \prime}$.
3. Where the lag serew penetration, p , is less than 8 D but not less than 4 D , tabulated lateral design values, Z , shall be multiplied by $\mathrm{p} / 8 \mathrm{D}$ or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration
4. The length of lag screw penetration, p, not including the length of the tapered tip, E (see Appendix Table L.2), of the lag screw into the main member shall not be less than 4D. See 12.1.4.6 for minimum length of penetration, $p_{\text {miar }}$

To determine the minimum required hand-rail connections, with a pre-manufactured hand-rail system provided by others. Our scope is limited to assess the minimum connection requirements of the hand-rail system as listed below. Our assumptions are that the base-plates, welds and metal member properties of the pre-manufactured complete system are sufficient in strength to support the code prescribed design loads, for which our design have been provided to comply with.

We have analyzed and verified the minimum connection requirements, for the following conditions:

- Wall connection (sloping wall @ stair)

Result: minimum (2) $1 / 4 / 1$ DIA $\times 3^{\prime \prime}$ SDS screws to a minimum of (1) support studs at each connection

- Base-plate connection (vertical post application, typical)

Result: The base-plate column connection to have a minimum of (4) $3 / 8^{\prime \prime} \times 41 / 2$ lag-screws into full width support member/beams below

- Wall connection (horizontal typical application)

Result: (2) $1 / 4$ " DIA x $3^{\prime \prime}$ SDS screws to a minimum of (2) support studs at each connection

PROJECT
SUBJECT \qquad
LONGITUDE
BY \qquad DATE 121412017
\qquad
\qquad DATE

LILO ENGINEERING \& DESIGN 200 Lbs demand $<320 \mathrm{L6S}$ Carpacirys

LONGITUDE
PROJECT
SUBJECT \qquad
by mer, pe

$$
\begin{aligned}
& W=\text { LITMBZANAL CAPACITN }\left(c_{t}=c_{t}=c_{e g}=1.0 \quad\right)=17916 \mathrm{~s} / \mathrm{menh} \\
& \omega_{C_{D}}=1.6 \times 440 \mathrm{ks} \mathrm{~s} \text { per sclecw/LAL } \\
& =179 \mathrm{Lbs} \times 2 / 2 \cong 446 \\
& 165 \\
& W_{(2)} 1 / 4^{42} \mathrm{LNOS} \times 3^{\prime \prime} \mathrm{min}=2 \times 440 \mathrm{L65N1.6}=1,408 \mathrm{Lb} \mathrm{~s}
\end{aligned}
$$

200 L6S CuINMDBNAL DEMANO <6408 LbS CAMALITY IN

CASL $2:$ BASL TLAII $=$ CONNECTION

LONGITUDE \qquad

CASLE 3: HORIZONTAL ENO-PLAIT CONARETIONAS

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Strong4tie
 Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	$5 / 3 / 2018$
Engineer:	MRT	Page:	$1 / 5$
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Concrete screw
Material: Carbon Steel
Diameter (inch): 0.375
Nominal Embedment depth (inch): 3.250
Effective Embedment depth, hef (inch): 2.400
Code report: ICC-ES ESR-2713
Anchor category: 1
Anchor ductility: No
$\mathrm{h}_{\text {min }}$ (inch): 5.00
Cac (inch): 3.63
$\mathrm{C}_{\text {min }}$ (inch): 1.75
$\mathrm{S}_{\text {min }}$ (inch): 3.00

Project description:
Location:
Fastening description:

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: $U=1.2(\mathrm{D}+\mathrm{F})+1.6(\mathrm{~L})+0.5(\mathrm{Lr}$ or S or R$)$
Seismic design: No
Anchors subjected to sustained tension: Not applicable
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No
<Figure 1>

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 6.00
State: Cracked
Compressive strength, $\mathrm{f}^{\prime} \mathrm{c}$ (psi): 2500
$\psi_{\mathrm{c}, \mathrm{V},} 1.0$
Reinforcement condition: B tension, B shear
Supplemental reinforcement: Not applicable
Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

Base Plate
Length x Width x Thickness (inch): $6.00 \times 6.00 \times 0.25$

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Stronghtie Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	$5 / 3 / 2018$
Engineer:	MRT	Page:	$2 / 5$
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor
Anchor Name: Titen HD® - 3/8"Ø Titen HD, hnom:3.25" (83mm)
Code Report: ICC-ES ESR-2713

SIMPSON Anchor Designer ${ }^{\text {TM }}$ Strongytie Software
 Version 2.5.6582.0

Company:	L120 Engineering \& Design	Date:	$5 / 3 / 2018$
Engineer:	MRT	Page:	$3 / 5$
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N_{ua} (lb)	Shear load x , $V_{\text {uax }}$ (Ib)	Shear load y, $V_{\text {uay }}(\mathrm{lb})$		Shear load combined, $\sqrt{ }\left(\mathrm{V}_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{Ib})$
1	1250.4	-80.0	0.0		80.0
2	1250.4	-80.0	0.0		80.0
3	0.0	-80.0	0.0		80.0
4	0.0	-80.0	0.0		80.0
Sum	2500.7	-320.0	0.0		320.0
Maximum concrete compression strain (\%): 0.12 Maximum concrete compression stress (psi): 538 Resultant tension force (lb): 2501 Resultant compression force (lb): 2501 Eccentricity of resultant tension forces in x-axis, e' ${ }_{n x}$ (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e' $n y$ (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00			<Figure 3>	$\bigcirc 1$	O2
				$\bigcirc 4$	03

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{s a}(\mathrm{lb})$	ϕ	$\phi N_{\text {sa }}(\mathrm{lb})$
10890	0.65	7079

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)
$N_{b}=k_{c} \lambda_{a} \downarrow f^{\prime} h_{e f}{ }^{1.5}$ (Eq. 17.4.2.2a)

k_{c}	λ_{a}	$f^{\prime}{ }^{\prime}(\mathrm{psi})$	$h_{\text {ef (}}$ (in)						
17.0	1.00	2500	2.400						
$\phi N_{c b g}=\phi\left(A_{N c} / A_{N c o}\right) \Psi_{e c, N} \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.4.2.1b)									
$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$\mathrm{Ca}_{\mathrm{a} \text { min }}$ (in)	$\Psi_{e c, N}$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	N_{b} (lb)	ϕ	$\phi N_{c b g}(\mathrm{lb})$
72.72	51.84	2.25	1.000	0.888	1.00	1.000	3160	0.65	2557

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

$\phi N_{p n}=\phi \Psi_{c, P} \lambda_{a} N_{p}\left(f_{c}^{\prime} / 2,500\right)^{n}$							$($ Sec. 17.3.1, Eq. 17.4.3.1 \& Code Report)
$\Psi_{c, P}$	λ_{a}	$N_{p}(\mathrm{lb})$	$f_{c}^{\prime}(\mathrm{psi})$	n			
1.0	1.00	2700	2500	0.50	0.65	1755	

Company:	L120 Engineering \& Design	Date:	$5 / 3 / 2018$
Engineer:	MRT	Page:	$4 / 5$
Project:	Hand-rail calculation		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

$V_{\text {sa }}(\mathrm{lb})$	$\phi_{\text {grout }}$	ϕ	$\phi_{\text {grout }} \phi V_{\text {sa }}(\mathrm{lb})$
4460	1.0	0.60	2676

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear parallel to edge in x-direction:

$V_{b y}=\min \left\|7\left(I_{e} / d_{a}\right)^{0.2} \sqrt{ } d_{a} \lambda_{a} \downarrow f_{c} c_{a 1} 1^{1.5} ; 9 \lambda_{a} \backslash f_{c} c_{a 1^{1}}{ }^{1.5}\right\|$ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)								
I_{e} (in)	d_{a} (in)	λ_{a}	f_{c}^{\prime} (psi)	$C_{a 1}$ (in)	$V_{\text {by }}(\mathrm{lb})$			
2.40	0.375	1.00	2500	2.25	1049			
$\phi V_{c b g x}=\phi(2)\left(A_{v_{c}} / A_{v_{c o o}}\right) \Psi_{e c, V} \Psi_{e d, V} \Psi_{c, V} \Psi_{h, V} V_{b y}($ Sec. 17.3.1, 17.5.2.1(c) \& Eq. 17.5.2.1b)								
$A_{v c}\left(\mathrm{in}^{2}\right)$	$A_{\text {vco }}\left(\mathrm{in}^{2}\right)$	$\Psi_{e c, V}$	$\Psi_{e d, V}$	$\Psi_{c, v}$	$\Psi_{h, v}$	$V_{\text {by }}$ (Ib)	ϕ	$\phi V_{\text {cbgx }}(\mathrm{lb})$
33.33	22.78	1.000	1.000	1.000	1.000	1049	0.70	2148

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{c p g}=\phi k_{c p} N_{c b g}=\phi k_{c p}\left(A_{N c} / A_{N c o}\right) \Psi_{e c, N} \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}($ Sec. 17.3 .1 \& Eq. 17.5.3.1b)

$k_{c p}$	$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{e c, N}$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	ϕ	$\phi V_{c p g}(\mathrm{lb})$
1.0	102.01	51.84	1.000	0.888	1.000	1.000	3160	0.70	3863

11. Results
 Interaction of Tensile and Shear Forces (Sec. 17.6.)

$3 / 8$ "Ø Titen HD, hnom:3.25" (83 mm) meets the selected design criteria.

[^1]| Company: | L120 Engineering \& Design | Date: | $5 / 3 / 2018$ |
| :--- | :--- | :--- | :--- |
| Engineer: | MRT | Page: | $5 / 5$ |
| Project: | Hand-rail calculation | | |
| Address: | | | |
| Phone: | | | |
| E-mail: | | | |

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections 17.7.1 and 17.7.2 for torqued cast-in-place anchor is waived per designer option.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Project:
Location: Single 2×4 stud (staircase)
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 3.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Hem-Fir - Dry Use

Section Adequate By: 0.8\%
Controlling Factor: Deflection

MATERIAL PROPERTIES

\#2-Hem-Fir

Bending Stress:	Base Values	Adjusted
	$\mathrm{Fb}=850 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=2040 \mathrm{psi}$
	$C d=1.60 \mathrm{CF}=1.50$	
Shear Stress:	$\mathrm{Fv}=150 \mathrm{psi}$	$\mathrm{Fv}^{\prime}=\quad 240 \mathrm{psi}$
	Cd=1.60	
Modulus of Elasticity:	$\mathrm{E}=1300 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1300 \mathrm{ksi}$
Comp. $\perp^{\text {to Grain: }}$	$\mathrm{Fc}-\perp=405 \mathrm{psi}$	Fc- ${ }^{\prime}=405$

| LOADING DIAGRAM |
| :--- | :--- |
| |
| |
| |
| |

Controlling Moment:

$408 \mathrm{ft}-\mathrm{lb}$
4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 $-104 \mathrm{lb}$

At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2
Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

$\frac{\text { Req'd }}{2.4 \mathrm{in} 3}$	$\frac{\text { Provided }}{3.06 \mathrm{in} 3}$
$0.65 \mathrm{in2}$	5.25 in 2
5.32 in 4	5.36 in 4
$408 \mathrm{ft-lb}$	$521 \mathrm{ft-lb}$
-104 lb	840 lb

Project:
Location: Single 2×6 stud (staircase)
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 9.0 \mathrm{FT}$
\#2 - Hem-Fir - Dry Use

Section Adequate By: 139.3\%
StruCalc Version 10.0.1.6
12/4/2017 4:34:53 PM

Controlling Factor: Moment

| LOADING DIAGRAM |
| :--- | :--- |
| |

Controlling Moment: $\quad 466 \mathrm{ft}-\mathrm{lb}$
4.5 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:

$$
-107 \mathrm{lb}
$$

At right support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Base Values	Adjusted
$\mathrm{Fb}=850 \mathrm{psi}$	$\mathrm{Fb}^{\prime}=1768$
$C d=1.60 \mathrm{CF}=1.30$	
$\mathrm{Fv}=150 \mathrm{psi}$	Fv' $=240$
$C d=1.60$	
$\mathrm{E}=1300 \mathrm{ksi}$	$E^{\prime}=1300$
$\mathrm{F}-\perp=405 \mathrm{p}$	

Project:
Location: Double 2×4 stud (flat orientation connection/top)
Multi-Loaded Multi-Span Beam
[2015 International Building Code(2015 NDS)]
(2) $1.5 \mathrm{IN} \times 3.5 \mathrm{IN} \times 8.0 \mathrm{FT}$
\#2 - Hem-Fir - Dry Use

Section Adequate By: 101.6\%
Controlling Factor: Deflection

DEFLECTIONS Center	
Live Load 0.26 IN L/363	
Dead Load 0.01 in	
Total Load 0.28 IN L/346	
Live Load Deflection Criteria: L/180	Total Load Deflection Criteria: L/120
REACTIONS $\underline{\text { A }}$ 电	
Live Load 100 lb 100 lb	
Dead Load 8 lb 8 lb	
Total Load 108 lb 108 lb	
Bearing Length 0.09 in 0.09 in	
BEAM DATA	
Span Length 8 ft	
Unbraced Length-Top 0 ft	
Unbraced Length-Bottom 8 ft	
Live Load Duration Factor 1.60	
Notch Depth 0.00	

MATERIAL PROPERTIES

\#2 - Hem-Fir

	Base Values	Adjusted
Bending Stress:	$\mathrm{Fb}=850 \mathrm{psi}$	Fb ' $=2040$ psi
	$C d=1.60 \quad C F=1.50$	
Shear Stress:	$\begin{aligned} & \mathrm{Fv}=150 \mathrm{psi} \\ & \mathrm{Cd}=1.60 \end{aligned}$	$\mathrm{Fv}^{\prime}=\quad 240 \mathrm{psi}$
Modulus of Elasticity:	$\mathrm{E}=1300 \mathrm{ksi}$	$\mathrm{E}^{\prime}=1300 \mathrm{ksi}$
Comp. $\perp^{\text {to Grain: }}$	Fc- $+=405 \mathrm{psi}$	Fc- ${ }^{\prime}=405 \mathrm{psi}$

LOADING DIAGRAM	

Controlling Moment:

$416 \mathrm{ft}-\mathrm{lb}$
4.0 Ft from left support of span 2 (Center Span)

Created by combining all dead loads and live loads on span(s) 2

Controlling Shear:
 108 lb

At left support of span 2 (Center Span)
Created by combining all dead loads and live loads on span(s) 2

Comparisons with required sections:
Section Modulus:
Area (Shear):
Moment of Inertia (deflection):
Moment:
Shear:

Req'd	Provided
2.45 in3	6.13 in3
0.67 in2	10.5 in2
5.32 in4	10.72 in4
$416 \mathrm{ft}-\mathrm{lb}$	1041 ft-
108 lb	1680

Balloon Framed stud calculations

Project:
Location: Baloon Framed Stud Design (typical wind) - SS
Column
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 17.25 \mathrm{FT}$ @ 12 O.C.
\#2 - Hem-Fir - Dry Use
Section Adequate By: 4.0\%

StruCalc Version 10.0.1.6
3/24/2018 5:04:47 PM

LOADING DIAGRAM

AXIAL LOADING

Live Load:	$\mathrm{PL}=\quad 500 \mathrm{plf}$
Dead Load:	$\mathrm{PD}=\quad 300 \mathrm{plf}$
Column Self Weight:	$\mathrm{CSW}=27 \mathrm{plf}$
Total Axial Load:	$\mathrm{PT}=827 \mathrm{plf}$
LATERAL LOADING	(Dy Face)
Uniform Lateral Load:	wL-Lat $=15 \mathrm{psf}$

Uniform Lateral Load
wL-Lat = 15 psf

Stud Calculations (Controlling Case Only):

Controlling Load Case: Axial total Load and Lateral loads (D + 0.75[L + W]
Actual Compressive Stress: $\quad \mathrm{Fc}=\quad 85 \mathrm{psi}$
Allowable Compressive Stress:
Eccentricity Moment ($\mathrm{X}-\mathrm{X}$ Axis):
Fc' $=\quad 266$ psi
Mx-ex $=\quad 0 \mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):
My-ey $=\quad 0 \mathrm{ft}-\mathrm{lb}$
Moment Due to Lateral Loads (X-X Axis):
Mx
Moment Due to Lateral Loads (Y - Y Axis):
$\mathrm{My}=\quad 0 \mathrm{ft}-\mathrm{lb}$
Bending Stress Lateral Loads Only (X-X Axis): Fbx = 664 psi
Allowable Bending Stress (X-X Axis): \quad Fbx' $=2033$ psi
Bending Stress Lateral Loads Only (Y-Y Axis): Fby $=00 \mathrm{psi}$
Allowable Bending Stress (Y-Y Axis): \quad Fby' $=2033$ psi
Combined Stress Factor:
CSF = 0.58

Project:
Location: Baloon Framed Stud Design (High Wind) - SS
Column
[2015 International Building Code(2015 NDS)]
$1.5 \mathrm{IN} \times 5.5 \mathrm{IN} \times 17.25 \mathrm{FT}$ @ 8 O.C.
\#2 - Hem-Fir - Dry Use
Section Adequate By: 6.4\%

DEFLECTIONS	IN $=\mathrm{L} / 192$	
Deflection due to lateral loads only: Live Load Deflection Criteria:	Defl $=1.08$	$\mathrm{~L} / 180$

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=$	333	lb
Dead Load:	Vert-DL-Rxn $=$	227	lb
Total Load:	Vert-TL-Rxn $=$	560	lb
HORIZONTAL REACTIONS		127	lb
Total Reaction at Top of Column:	TL-Rxn-Top $=$	127	lb
Total Reaction at Bottom of Column:	TL-Rxn-Bottom $=$		

COLUMN DATA		
Total Column Length:	17.25 ft	
Unbraced Length (X-Axis) Lx:	17.25 ft	
Unbraced Length (Y-Axis) Ly:	0	ft
Column End Condition-K (e):	1	
Axial Load Duration Factor	1.00	
Lateral Load Duration Factor (Wind/Seismic)	1.60	

STUD PROPERTIES
 \#2 - Hem-Fir

Compressive Stress:

Bending Stress (X-X Axis): $\mathrm{Fbx}=850 \mathrm{psi} \quad \mathrm{Fbx}=2033 \mathrm{psi}$ $C d=1.60 \mathrm{CF}=1.30 \mathrm{Cr}=1.15 \mathrm{Cl}=1.00$
Bending Stress (Y-Y Axis): $\mathrm{Fby}=850 \mathrm{psi} \quad \mathrm{Fby}=2033 \mathrm{psi}$ $C d=1.60 \quad C F=1.30 \quad C r=1.15$
Modulus of Elasticity: $\quad \mathrm{E}=1300 \mathrm{ksi} \quad \mathrm{E}=1300 \mathrm{ksi}$

Stud Section (X-X Axis):	$d x=$	5.5	in
Stud Section (Y-Y Axis):	$d y=$	1.5	in
Area:	$\mathrm{A}=$	8.25	in 2
Section Modulus (X-X Axis):	$\mathrm{Sx}=$	7.56	in 3
Section Modulus (Y-Y Axis):	Sy $=$	2.06	in 3
Slenderness Ratio:	Lex $/ \mathrm{dx}=$	37.64	
	Ley $/ \mathrm{dy}=$	0	

Stud Calculations (Controlling Case Only):			
Controlling Load Case: Axial Dead Load and Lateral loads (D + W or E)			
Actual Compressive Stress:	$\mathrm{Fc}=$	27	psi
Allowable Compressive Stress:	Fc' $=$	266	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	0	$\mathrm{ft-lb}$
Eccentricity Moment ($\mathrm{Y}-\mathrm{Y}$ Axis):	My-ey =	0	$\mathrm{ft-lb}$
Moment Due to Lateral Loads (X-X Axis):	Mx =	546	ft
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft-lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	866	psi
Allowable Bending Stress (X -X Axis):	Fbx' $=$	2033	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =		psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	2033	psi
Combined Stress Factor:	CSF =	0.48	

LOADING DIAGRAM

AXIAL LOADING

| Live Load: | $\mathrm{PL}=\quad 500 \mathrm{plf}$ |
| :--- | :--- | :--- |
| Dead Load: | $\mathrm{PD}=\quad 300 \mathrm{plf}$ |
| Column Self Weight: | $\mathrm{CSW}=27 \mathrm{plf}$ |
| Total Axial Load: | $\mathrm{PT}=827 \mathrm{plf}$ |
| | |
| LATERAL LOADING | (Dy Face) |
| Uniform Lateral Load: | wL-Lat $=22 \mathrm{psf}$ |

Project:
Location: Baloon Framed Stud Design (typical wind) - LSL
Column
[2015 International Building Code(2015 NDS)]
$1.75 \mathrm{IN} \times 5.5 \mathrm{IN} \times 17.25 \mathrm{FT}$ @ 16 O.C.
1.55E Timberstrand LSL - iLevel Trus Joist

Section Adequate By: 8.5\%

| DEFLECTIONS | | |
| :--- | ---: | ---: | ---: |
| Deflection due to lateral loads only:
 Live Load Deflection Criteria: | Defl $=1.06$ | IN $=\mathrm{L} / 195$ |
| $\mathrm{~L} / 180$ | | |

VERTICAL REACTIONS			
Live Load:	Vert-LL-Rxn $=$	667	lb
Dead Load:	Vert-DL-Rxn $=$	452	lb
Total Load:	Vert-TL-Rxn $=$	1119	lb
HORIZONTAL REACTIONS		173	lb
Total Reaction at Top of Column:	TL-Rxn-Top $=$	173 lb	
Total Reaction at Bottom of Column:	TL-Rxn-Bottom $=$		

COLUMN DATA	
Total Column Length:	17.25 ft
Unbraced Length (X-Axis) Lx:	17.25 ft
Unbraced Length (Y-Axis) Ly:	0 ft
Column End Condition-K (e):	1
Axial Load Duration Factor	1.00
Lateral Load Duration Factor (Wind/Seismic)	1.60

STUD PROPERTIES

1.55E Timberstrand LSL - iLevel Trus Joist

Compressive Stress: \quad| | |
| ---: | :---: |
| $\mathrm{Fc}=2170 \mathrm{psi}$ | |
| $\mathrm{Cd}=1.60 \mathrm{CD}=0.13$ | |
| Fc | $=451 \mathrm{psi}$ |

Bending Stress (X-X Axis): $\mathrm{Fbx}=2325 \mathrm{psi} \quad \mathrm{Fbx}=3997 \mathrm{psi}$ $C d=1.60 \mathrm{CF}=1.07 \mathrm{Cl}=1.00$
Bending Stress (Y-Y Axis): Fby $=2325 \mathrm{psi} \quad \mathrm{Fby}=3997 \mathrm{psi}$ $C d=1.60 \quad C F=1.07$
Modulus of Elasticity: $\quad \mathrm{E}=1550 \mathrm{ksi} \quad \mathrm{E}^{\prime}=1550 \mathrm{ksi}$

Stud Section (X-X Axis):	$d x=$	5.5	in
Stud Section (Y-Y Axis):	$d y=$	1.75	in
Area:	$\mathrm{A}=$	9.63	in 2
Section Modulus (X-X Axis):	$\mathrm{Sx}=$	8.82	in 3
Section Modulus (Y-Y Axis):	Sy $=$	2.81	in 3
Slenderness Ratio:	Lex $/ \mathrm{dx}=$	37.64	
	Ley $/ \mathrm{dy}=$	0	

Stud Calculations (Controlling Case Only):			
Controlling Load Case: Axial Dead Load and Lateral loads ($\mathrm{D}+\mathrm{W}$ or E)			
Actual Compressive Stress:	$\mathrm{Fc}=$	47	psi
Allowable Compressive Stress:	Fc' $=$	451	psi
Eccentricity Moment ($\mathrm{X}-\mathrm{X}$ Axis):	Mx-ex $=$	0	$\mathrm{ft}-\mathrm{lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	0	ft -lb
Moment Due to Lateral Loads (X-X Axis):	$\mathrm{Mx}=$	744	ft -lb
Moment Due to Lateral Loads (Y-Y Axis):	My =	0	ft -lb
Bending Stress Lateral Loads Only (X-X Axis):	$\mathrm{Fbx}=$	1012	psi
Allowable Bending Stress ($\mathrm{X}-\mathrm{X}$ Axis):	Fbx' $=$	3997	psi
Bending Stress Lateral Loads Only ($\mathrm{Y}-\mathrm{Y}$ Axis)	Fby $=$	0	psi
Allowable Bending Stress ($\mathrm{Y}-\mathrm{Y}$ Axis):	Fby' $=$	3997	psi
Combined Stress Factor:	CSF $=$	0.29	

LOADING DIAGRAM

AXIAL LOADING

Live Load:		$\mathrm{PL}=\quad 500 \mathrm{plf}$
Dead Load:	$\mathrm{PD}=\quad 300 \mathrm{plf}$	
Column Self Weight:	$\mathrm{CSW}=52 \mathrm{plf}$	
Total Axial Load:	$\mathrm{PT}=852 \mathrm{plf}$	
LATERAL LOADING	(Dy Face)	
Uniform Lateral Load:	wL-Lat $=15 \mathrm{psf}$	

Project:
Location: Baloon Framed Stud Design (High Wind) - LSL
Column
[2015 International Building Code(2015 NDS)]
$1.75 \mathrm{IN} \times 5.5 \mathrm{IN} \times 17.25 \mathrm{FT}$ @ 12 O.C.
1.55E Timberstrand LSL - iLevel Trus Joist

Section Adequate By: 1.0\%

StruCalc Version 10.0.1.6
3/24/2018 5:11:20 PM

LOADING DIAGRAM

AXIAL LOADING

| Live Load: | $\mathrm{PL}=\quad 500 \mathrm{plf}$ |
| :--- | :--- | :--- |
| Dead Load: | $\mathrm{PD}=\quad 300 \mathrm{plf}$ |
| Column Self Weight: | $\mathrm{CSW}=52 \mathrm{plf}$ |
| Total Axial Load: | $\mathrm{PT}=852 \mathrm{plf}$ |
| | |
| LATERAL LOADING | (Dy Face) |
| Uniform Lateral Load: | wL-Lat $=22 \mathrm{psf}$ |

Stud Calculations (Controlling Case Only):			
Controlling Load Case: Axial Dead Load and Lateral loads ($\mathrm{D}+\mathrm{W}$ or E)			
Actual Compressive Stress:	$\mathrm{Fc}=$	37	psi
Allowable Compressive Stress:	Fc' $=$	451	psi
Eccentricity Moment (X-X Axis):	Mx-ex =	0	$\mathrm{ft-lb}$
Eccentricity Moment (Y-Y Axis):	My-ey =	0	ft-lb
Moment Due to Lateral Loads (X-X Axis):	Mx =	800	ft-lb
Moment Due to Lateral Loads (Y-Y Axis):	$\mathrm{My}=$	0	$\mathrm{ft-lb}$
Bending Stress Lateral Loads Only (X-X Axis):	Fbx $=$	1088	psi
Allowable Bending Stress (X -X Axis):	Fbx' $=$	3997	psi
Bending Stress Lateral Loads Only (Y-Y Axis):	Fby =	0	psi
Allowable Bending Stress (Y-Y Axis):	Fby' =	3997	psi
Combined Stress Factor:	CSF $=$	0.3	

Ledger Calculations

ONE TWENTY゚
ENGINEERING \& DESIGN

PROJECT

Table 12.3.3A Assigned Specific Gravities

1. Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber (see Table 4C, Footnote 2).
\qquad

LONGITUDE

ONE TWENTY

ENGINEERING \＆DESIGN

Table 12K LAG SCREWS：Reference Lateral Design Values，z，for Single Shear （two member）Connections ${ }^{1,2,3,4}$

for sawn lumber or SCL with ASTM A653，Grade 33 steel side plate（for $\mathrm{t}_{\mathrm{s}}<1 / 4^{\text {－}}$ ）or ASTM A 36 steel side plate（for $\mathrm{t}_{\mathrm{s}}=1 / 4^{\prime \prime}$ ）
（tabulated lateral design values are calculated based on an assumed length of lag screw penetration， p ，into the main member equal to 8D）

						$\begin{array}{r} \frac{8}{5} \\ \frac{5}{4} \\ \text { n } \\ \text { ne } \\ \text { on } \\ 08 \\ \hline \end{array}$						$\begin{aligned} & \text { 管音 } \\ & \text { 曾 } \end{aligned}$										
		$\begin{aligned} & \mathbf{Z}_{\\| 1} \\ & \mathrm{lbs} . \end{aligned}$	$\underset{\text { libs. }}{\mathbf{z}_{1}}$	Z libs．	$\underset{\text { lbs }}{\mathbf{z}_{\perp}}$	Z ${ }_{\text {a }}$ Ibs．	z_{1}	$\begin{array}{r} \mathbf{z}_{11} \\ \text { lbs. } \\ \hline \end{array}$	z_{1} libs．	$\begin{gathered} \mathbf{z}_{1} \\ \text { lbs. } \end{gathered}$	$\begin{aligned} & \mathbf{Z}_{\mathbf{1}} \\ & \mathrm{Bos} \end{aligned}$	Z_{11}	Z1．	$\begin{gathered} \mathbf{z}_{11} \\ \text { libs. } \end{gathered}$	Z_{1} lbs.	$\begin{gathered} \mathbf{Z}_{11} \\ \text { bs. } \end{gathered}$	$\underset{\text { lbs．}}{\substack{\text { l }}}$	Z libs．	$\mathrm{z}_{\boldsymbol{\prime}}^{\text {libs．}}$	Z libs．	Z_{\perp}	
0.075	1／4	170	130	160	120	150	110	150	110	150	100	140	100	140	100	130	90	130	90	130	90	
（14 gage）	5／16	220	160	200	140	190	130	190	130	190	130	180	120	180	120	170	110	170	110	160	100	
	$3 / 8$	220	160	200	140	200	130	190	130	190	120	180	120	180	120	170	110	170	100	170	100	
$\begin{gathered} 0.105 \\ \text { (12 gage) } \end{gathered}$	1／4	180	140	170	130	160	120	160	120	160	110	150	110	150	110	140	100	140	100	140	90	
	5／16	230	170	210	150	200	140	200	140	190	130	190	130	190	120	180	110	170	110	170	110	
	3／8	230	160	210	140	200	140	200	130	200	130	190	120	190	120	180	110	180	110	170	110	
$\begin{gathered} 0.120 \\ (11 \text { gage) } \end{gathered}$	1／4	190	150	180	130	170	120	170	120	160	120	160	110	160	110	150	100	150	100	140	100	
	5／16	230	170	210	150	210	140	200	140	200	140	190	130	190	130	180	120	180	120	180	110	
	$3 / 8$	240	170	220	150	210	140	210	140	200	130	200	130	190	120	180	110	180	110	180	110	
$\begin{gathered} \hline 0.134 \\ \text { (10 gage) } \end{gathered}$	1／4	200	150	180	140	180	130	170	130	170	120	160	120	160	110	150	110	150	100	150	100	
	5／16	240	180	220	160	210	150	210	140	200	140	200	130	200	130	190	120	180	120	180	120	
	318	240	170	220	150	220	140	210	140	210	140	200	130	200	130	190	120	190	120	180	110	
$\begin{gathered} 0.179 \\ (7 \text { gage) } \end{gathered}$	1／4	220	170	210	150	200	150	200	140	190	140	190	130	190	130	180	120	170	120	170	120	
	5／16	260	190	240	170	230	160	230	160	230	150	220	150	220	150	210	130	200	130	200	130	
	3／8	270	190	250	170	240	160	240	160	230	150	220	140	220	140	210	130	210	130	200	130	
$\begin{gathered} 0.239 \\ (3 \mathrm{gage}) \end{gathered}$	1／4	240	180	220	160	210	150	210	150	200	140	190	140	190	130	180	120	180	120	180	120	
	5／16	300	220	280	190	270	180	260	180	260	170	250	160	250	160	230	150	230	150	230	140	
	3／8	310	220	280	190	270	180	270	180	260	170	250	160	250	160	240	140	230	140	230	140	
	7／16	420	290	350	260	380	240	370	240	360	230	350	220	350	220	330	200	330	200	320	190	
	1／2	510	340	470	300	460	290	450	280	440	270	430	260	420	260	400	240	400	230	390	230	
	518	770	490	710	430	680	400	680	400	660	380	640	370	630	360	600	330	590	330	580	320	
	3／4	1110	670	1020	590	980	560	970	550	950	530	920	500	910	500	860	450	850	450	840	440	
	7／8	1510	880	1390	780	1330	730	1320	710	1280	690	1250	650	1230	650	1170	590	1160	590	1140	570	
	1	1940	1100	1780	960	1710	910	1700	890	1650	860	1600	820	1590	810	1500	740	1480	730	1460	710	
1／4	1／4	240	180	220	160	210	150	210	150	200	140	200	140	190	130	180	120	180	120	180	120	
	5／16	310	220	280	200	270	180	270	180	260	170	250	170	250	160	23.0	150	230	150	230	140	
	318	320	220	290	190	280	180	270	180	270	170	260	160	250	160	240	150	240	140	230	140	
	7／16	480	320	440	280	420	270	420	260	410	250	390	240	390	230	370	220	360	210	360	210	
	1／2	580	390	540	340	520	320	510	320	500	310	480	290	480	290	460	270	450	260	440	260	
	$5 / 8$	850	530	780	470	750	440	740	440	720	420	700	400	690	400	660	370	650	360	640	350	
	3／4	1200	730	1100	640	1060	600	1050	590	1020	570	990	540	980	530	930	490	920	480	900	470	
	7／8	1600	930	1470	820	1410	770	1400	750	1360	720	1320	690	1310	680	1240	630	1220	620	1200	600	
	1	2040	1150	1870	1000	1800	950	1780	930	1730	900	1680	850	1660	840	1570	770	1550	760	1530	740	

1．Tabulated lateral design values，Z ，shall be multiplied by all applicable adjustment factors（see Table 11．3．1）．
2．Tabulated lateral design values， \mathbf{Z} ，are for＂reduced body diameter＂lag screws（see Appendix Table L2）inserted in side grain with serew axis perpendicular to wood fibers；screw penetration， p ，into the main member equal to 8 D ；dowel bearing strengths， F_{e} ，of 61,850 psi for ASTM A 653 ，Grade 33 steel and 87,000 psi for ASTM A36 steel and screw bending yield strengths，$F_{\text {yto }}$ of 70,000 psi for $D=1 / 4^{\prime \prime}, 60,000$ psi for $D=5 / 16^{\prime \prime}$ ，and 45,000 psi for $D \geq 3 / 8^{\prime \prime}$ ．
3．Where the lag serew penetration，p ，is less than 8 D but not less than 4 D ，tabulated lateral design values， Z ，shall be multiplied by p / sD or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration
4．The length of lag screw penetration，p ，not including the length of the tapered tip，E（see Appendix Table L．2），of the lag screw into the main member shall not be less than 4D．See 12．1．4．6 for minimum length of penetration，$p_{\text {miar }}$

SDS connection of steel plate to wood，assuming HF， 100 lbs per 1／4＂DIA SDS un－factored， without group action reduction， pending application／spacing．

ONE TWENTY

ENGINEERING \& DESIGN
BY \qquad DATE / /

Table 12L WOOD SCREWS: Reference Lateral Design Values, z , for Single Shear (two member) Connections ${ }^{1,2,3}$
for sawn lumber or SCL with both members of identical specific gravity (tabulated lateral design values are calculated based on an assumed length of wood screw penetration, p , into the main member equal to 10D)

			$\begin{aligned} & 5.8 \\ & 0.8 \\ & 08 \\ & 0.8 \\ & \hline \end{aligned}$					
$\begin{aligned} & t_{5} \\ & \text { in. } \end{aligned}$	in.		lbs.	lbs.	lbs.	lbs.	lbs.	
1/2	0.138	6	88	67	59	57	53	
	0.151	7	96	74	65	63	59	
	0.164	8	107	82	73	71	66	
	0.177	9	121	94	83	81	76	
	0.190	10	130	101	90	87	82	
	0.216	12	156	123	110	107	100	
	0.242	14	168	133	120	117	110	
5/8	0.138	6	94	76	66	64	59	
	0.151	7	104	83	72	70	64	
	0.164	8	120	92	80	77	72	
	0.177	9	136	103	91	88	81	
	0.190	10	146	111	97	94	88	
	0.216	12	173	133	117	114	106	
	0.242	14	184	142	126	123	115	
3/4	0.138	6	94	79	72	71	65	
	0.151	7	104	87	80	77	71	
	0.164	8	120	101	88	85	78	
	0.177	9	142	114	99	96	88	
	0.190	10	153	122	107	103	95	

Exterior: Typical Ledger connection w/ SDS, un-factored since typical Deck loading application with duration = 1 . Minimum (3) SDSW screws into RIM @ 12" o.c stud. Assuming worst case with 12' deck framing with connections into RIM @ 12" o.c w/ 60 psf LL and 10 psf DL - loading on each connection, staggered, (and ignoring capacity of typical nailing of rim). Connection is $6^{\prime} \times 72$ psf $\times 1.00=432 \#$ versus capacity into DF/Engineered lumber (LSL) - 489\#, ok.

	0.177	9	142	118	108	106	100	94	90	75	73	70
	0.190	10	153	128	117	114	108	101	97	81	78	75
	0.216	12	193	161	147	143	131	118	114	96	93	89
	0.242	14	213	178	157	152	139	126	122	102	100	95
1-1/4	0.138	6	94	79	72	71	67	63	61	55	54	52
	0.151	7	104	87	80	78	74	69	68	60	59	57
	0.164	8	120	101	92	90	85	80	78	70	68	66
	0.177	9	142	118	108	106	100	94	92	82	80	78
	0.190	10	153	128	117	114	108	101	99	88	87	84
	0.216	12	193	161	147	144	137	128	125	108	105	100
	0.242	14	213	178	163	159	151	141	138	115	111	106
1-1/2	0.138	6	94	79	72	71	67	63	61	55	54	52
	0.151	7	104	87	80	78	74	69	68	60	59	57
	0.164	8	120	101	92	90	85	80	78	70	68	66
	0.177	9	142	118	108	106	100	94	92	82	80	78
	0.190	10	153	128	117	114	108	101	99	88	87	84
	0.216	12	193	161	147	144	137	128	125	111	109	106
	0.242	14	213	178	163	159	151	141	138	123	120	117
1-3/4	0.138	6	94	79	72	71	67	63	61	55	54	52
	0.151	7	104	87	80	78	74	69	68	60	59	57
	0.164	8	120	101	92	90	85	80	78	70	68	66
	0.177	9	142	118	108	106	100	94	92	82	80	78
	0.190	10	153	128	117	114	108	101	99	88	87	84
	0.216	12	193	161	147	144	137	128	125	111	109	106
	0.242	14	213	178	163	159	151	141	138	123	120	117

1. Tabulated lateral design values, \mathbf{Z}, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
2. Tabulated lateral design values, Z, are for rolled thread wood serews (see Appendix Table L3) inserted in side grain with serew axis perpendicular to wood fibers; screw penetration, p, into the main member equal to 10 D ; and screw bending yield strengths, $\mathrm{F}_{\mathrm{y}, \mathrm{o}}$ of 100,000 psi for $0.099^{\prime \prime} \leq \mathrm{D} \leq 0.142^{\prime \prime}, 90,000$ psi for $0.142^{\prime \prime}<$ $D \leq 0.177^{\prime \prime}, 80,000$ psi for $0.177^{\prime \prime}<D \leq 0.236^{\prime \prime}$, and 70,000 psi for $0.236^{\prime \prime}<D \leq 0.273^{\prime \prime}$,
3. Where the wood screw penetration, p, is less than 10 D but not less than 6 D , tabulated lateral design values, Z, shall Ge multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

ONE TWENTYㅁ

ENGINEERING \& DESIGN
\qquad

Table 12.2A Lag Screw Reference Withdrawal Design Values, Wi
Tabulated withdrawal design values (\mathbf{W}) are in pounds per inch of thread penetration into side grain of wood member.
Length of thread penetration in main member shall not include the length of the tapered tip (see 12.2.1.1).

Specific Gravity,	Lag Screw Diameter, D										
$\mathbf{G}^{\mathbf{2}}$	1/4"	5/16"1	3/8 ${ }^{\prime \prime}$	7/16"	1/2"	5/8 ${ }^{\prime \prime}$	3/4"	7/8"	1"	1-1/8"	1-1/4"
0.73	397	469	538	604	668	789	905	1016	1123	1226	1327
0.71	381	450	516	579	640	757	868	974	1077	1176	1273
0.68	357	422	484	543	600	709	813	913	1009	1103	1193
0.67	349	413	473	531	587	694	796	893	987	1078	1167
0.58	281	332	381	428	473	559	641	719	795	869	940
0.55	260	307	352	395	437	516	592	664	734	802	868
0.51	232	274	314	353	390	461	528	593	656	716	775
0.50	225	266	305	342	378	447	513	576	636	695	752
0.49	218	258	296	332	367	434	498	559	617	674	730
0.47	205	242	278	312	345	408	467	525	580	634	686
0.46	199	235	269	302	334	395	453	508	562	613	664
0.44	186	220	252	283	312	369	423	475	525	574	621
0.43	179	212	243	273	302	357	409	459	508	554	600
0.42	173	205	235	264	291	344	395	443	490	535	579
0.41	167	198	226	254	281	332	381	428	473	516	559
0.40	161	190	218	245	271	320	367	412	455	497	538
0.39	155	183	210	236	261	308	353	397	438	479	518
0.38	149	176	202	227	251	296	340	381	422	461	498
0.37	143	169	194	218	241	285	326	367	405	443	479
0.36	137	163	186	209	231	273	313	352	389	425	460
0.35	132	156	179	200	222	262	300	337	373	407	441
0.31	110	130	149	167	185	218	250	281	311	339	367

1. Tabulated withdrawal design values, W , for lag serew connections shall be multiplied by all applicable adjustment factors (see Table 11.3 .1).
2. Specific gravity, G, shall be determined in accordance with Table 12.3 .3 A .
12.2.3.2 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in $\mathrm{lbs} / \mathrm{in}$. of fastener penetration from 12.2.3.1 shall be multiplied by the length of fastener penetration, p_{t}, into the wood member.
12.2.3.3 The reference withdrawal design value, in $\mathrm{lbs} / \mathrm{in}$. of penetration, for a single post-frame ring shank nail driven in the side grain of the main member, with the nail axis perpendicular to the wood fibers, shall be determined from Table 12.2D or Equation 12.2-4, within the range of specific gravities and nail diameters given in Table 12.2D. Reference withdrawal design values, W, shall be multiplied by all applicable adjustment factors (see Table 11.3.1) to obtain adjusted withdrawal design values, W^{\prime}.
12.2.3.4 For calculation of the fastener reference withdrawal design value in pounds, the unit reference withdrawal design value in $\mathrm{Ibs} / \mathrm{in}$. of ring shank penetration from 12.2.3.3 shall be multiplied by the length of ring shank penetration, p_{v}, into the wood member.
12.2.3.5 Nails and spikes shall not be loaded in withdrawal from end grain of wood ($\mathrm{C}_{\mathrm{eg}}=0.0$).
12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in crosslaminated timber ($\mathrm{C}_{\mathrm{eg}}=0.0$).

12.2.4 Drift Bolts and Drift Pins

Reference withdrawal design values, W , for connections using drift bolt and drift pin connections shall be determined in accordance with 11.1.1.3.

$$
\mathrm{W}=1800 \mathrm{G}^{2} \mathrm{D}
$$

(12.2-4)

[^2]ENGINEERING \& DESIGN
BY
DATE \qquad

Table 12M $\begin{aligned} & \text { WOOD SCREWS: Reference Lateral Design Values, } \mathrm{Z} \text {, for Single Shear } \\ & \text { (two member) Connections }{ }^{1,2,3}\end{aligned}$
for sawn lumber or SCL with ASTM 653, Grade 33 steel side plate
(tabulated lateral design values are calculated based on an assumed length of wood screw penetration, p, into the main member equal to 10D)

		능 응 5 \vdots \vdots 0 0 8 0 3	$\begin{aligned} & \text { to } \\ & \text { 응 } \\ & 0 . \\ & 0 . \end{aligned}$									
in.	in.		lbs.									
0.036	0.138	6	89	76	70	69	66	62	60	54	53	52
(20 gage)	0.151	7	99	84	78	76	72	68	67	60	59	57
	0.164	8	113	97	89	87	83	78	77	69	67	66
0.048	0.138	6	90	77	71	70	67	63	61	55	54	53
(18 gage)	0.151	7	100	85	79	77	74	69	68	61	60	58
	0.164	8	114	98	90	89	84	79	78	70	69	67
0.060	0.138	6	92	79	73	72	68	64	63	57	56	54
(16 gage)	0.151	7	101	87	81	79	75	71	70	63	61	60
	0.164	8	116	100	92	90	86	81	79	71	70	68
	0.177	9	136	116	107	105	100	94	93	83	82	79
	0.190	10	146	125	116	114	108	102	100	90	88	86
0.075	0.138	6	95	82	76	75	71	67	66	59	58	57
(14 gage)	0.151	7	105	90	84	82	78	74	72	65	64	62
	0.164	8	119	103	95	93	89	84	82	74	73	71
	0.177	9	139	119	110	108	103	97	95	86	84	82
	0.190	10	150	128	119	117	111	105	103	92	91	88
	0.216	12	186	159	147	145	138	130	127	114	112	109
	0.242	14	204	175	162	158	151	142	139	125	123	120
0.105	0.138	6	104	90	84	82	79	74	73	66	65	63
(12 gage)	0.151	7	114	99	92	90	86	81	80	72	71	69
	0.164	8	129	111	103	102	97	92	90	81	80	77
	0.177	9	148	128	119	116	111	105	103	93	91	89
	0.190	10	160	138	128	125	120	113	111	100	98	96
	0.216	12	196	168	156	153	146	138	135	122	120	116
	0.242	14	213	183	170	167	159	150	147	132	130	126
0.120	0.138	6	110	95	89	87	83	79	77	70	68	67
(11 gage)	0.151	7	120	104	97	95	91	86	84	76	75	73
	0.164	8	135	117	109	107	102	96	94	85	84	82
	0.177	9	154	133	124	121	116	110	107	97	95	93
	0.190	10	166	144	133	131	125	118	116	104	103	100
	0.216	12	202	174	162	159	152	143	140	126	124	121
	0.242	14	219	189	175	172	164	155	152	137	134	131
0.134	0.138	6	116	100	93	92	88	83	81	73	72	70
(10 gage)	0.151	7	126	110	102	100	96	91	89	80	79	77
	0.164	8	141	122	114	112	107	101	99	89	88	86
	0.177	9	160	139	129	127	121	114	112	101	100	97
	0.190	10	173	149	139	136	130	123	121	109	107	104
	0.216	12	209	180	167	164	157	148	145	131	129	126
	0.242	14	226	195	181	177	169	160	157	141	139	135
0.179	0.138	6	126	107	99	97	92	86	84	76	74	72
(7 gage)	0.151	7	139	118	109	107	102	95	93	84	82	80
	0.164	8	160	136	126	123	117	110	108	96	95	92
	0.177	9	184	160	148	145	138	129	127	113	111	108
	0.190	10	198	172	159	156	149	140	137	122	120	117
	0.216	12	234	203	189	186	178	168	165	149	146	143
	0.242	14	251	217	202	198	190	179	176	159	156	152
0.239	0.138	6	126	107	99	97	92	86	84	76	74	72
(3 gage)	0.151	7	139	118	109	107	102	95	93	84	82	80
	0.164	8	160	136	126	123	117	110	108	96	95	92
	0.177	9	188	160	148	145	138	129	127	113	111	108
	0.190	10	204	173	159	156	149	140	137	122	120	117
	0.216	12	256	218	201	197	187	176	172	154	151	147
	0.242	14	283	241	222	217	207	194	190	170	167	162

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1),
2. Tabulated lateral design values, Z, are for rolled thread wood serews (see Appendix L) inserted in side grain with serew axis perpendicular to wood fibers; serew penetration, p, into the main member equal to 10 D ; dowel bearing strength, F_{8}, of 61,850 psi for ASTM A 653 , Grade 33 steel and screw bending yield strengths, $\mathrm{F}_{\text {, of }} 100,000$ psi for $0.099^{\prime \prime} \leq \mathrm{D} \leq 0.142^{\prime \prime}, 90,000$ psi for $0.142^{\prime \prime}<\mathrm{D} \leq 0.177^{\prime \prime}, 80,000$ psi for $0.177^{\prime \prime}<\mathrm{D} \leq 0.236^{\prime \prime}, 70,000$ psi for $0.236^{\prime \prime}<\mathrm{D} \leq 0.273^{\prime \prime}$
3. Where the wood serew penetration, p, is less than 10 D but not less than $\overline{6} \mathrm{D}$, tabulated lateral design values, \bar{Z}, shall be multiplied by p/10D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.

ONE TWENTYㅁ

ENGINEERING \& DESIGN
BY
DATE \qquad

Table 12P (Cont.) Values, \mathbf{Z}, for Single Shear (two member) Connections ${ }^{\mathbf{1 , 2 , 3}}$
for sawn lumber or SCL with ASTM 653, Grade 33 steel side plate
(tabulated lateral design values are calculated based on an assumed length of nail penetration, p, into the main member equal to 10 D)

1. Tabulated lateral design values, Z, shall be multiplied by all applicable adjustment factors (see Table 11.3.1).
2. Tabulated lateral design values, Z, are for common, box, or sinker steel wire nails (see Appendix Table L4) inserted in side grain with nail axis perpendicular to wood fibers; nail penetration, p , into the main member equal to 10 D ; dowel bearing strength, F_{6}, of 61,850 psi for ASTM A653, Grade 33 steel and nail bending yield strengths, $\mathrm{F}_{\text {w }}$ of 100,000 psi for $0.099^{\prime \prime} \leq \mathrm{D} \leq 0.142^{\prime \prime}, 90,000$ psi for $0.142^{\prime \prime}<\mathrm{D} \leq 0.177^{\prime \prime}, 80,000$ psi for $0.177^{\prime \prime}<\mathrm{D} \leq 0.236^{\prime \prime}, 70,000$ psi for $0.236^{\prime \prime}<\mathrm{D} \leq 0.273^{\prime \prime}$ -
3. Where the nail or spike penetration, p , is less than 10 D but not less than 6 D , tabulated lateral design values, Z , shall be multiplied by p 10 D or lateral design values shall be calculated using the provisions of 12.3 for the reduced penetration.
\qquad

LONGITUDE

SUBJECT

ONE TWENTY

ENGINEERING \& DESIGN
BY \qquad

DATE \qquad

Table 11.3.6A $\begin{array}{ll}\text { Group Action Factors, } C_{g} \text {, for Boit or Lag Screw Connections with } \\ \text { Wood Side Members }{ }^{2}\end{array}$

For $\mathrm{D}=1^{\prime \prime}, \mathrm{s}=4^{\prime \prime}, \mathrm{E}=1,400,000 \mathrm{psi}$												
$\mathrm{A}_{3} / \mathrm{A}_{\mathrm{m}}{ }^{\text {²}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}}{ }^{1} \\ & \text { in. } \end{aligned}$	Number of fasteners in a row										
		2	3	4	5	6	7	8	9	10	11	12
0.5	5	0.98	0.92	0.84	0.75	0.68	0.61	0.55	0.50	0.45	0.41	0.38
	12	0.99	0.96	0.92	0.87	0.81	0.76	0.70	0.65	0.61	0.57	0.53
	20	0.99	0.98	0.95	0.91	0.87	0.83	0.78	0.74	0.70	0.66	0.62
	28	1.00	0.98	0.96	0.93	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.84	0.81	0.78	0.75
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.87	0.84	0.82
1	5	1.00	0.97	0.91	0.85	0.78	0.71	0.64	0.59	0.54	0.49	0.45
	12	1.00	0.99	0.96	0.93	0.88	0.84	0.79	0.74	0.70	0.65	0.61
	20	1.00	0.99	0.98	0.95	0.92	0.89	0.86	0.82	0.78	0.75	0.71
	28	1.00	0.99	0.98	0.97	0.94	0.92	0.89	0.86	0.83	0.80	0.77
	40	1.00	1.00	0.99	0.98	0.96	0.94	0.92	0.90	0.87	0.85	0.82
	64	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88

1. Where $\mathrm{A}_{2} / \mathrm{A}_{\mathrm{m}}>1.0$, use $\mathrm{A}_{\mathrm{m}} / \mathrm{A}_{\mathrm{r}}$, and use A_{m} instead of A_{s}.
2. Tabulated group action factors $\left(\mathrm{C}_{8}\right)$ are conservative for $\mathrm{D}<1^{\prime \prime}, \mathrm{s}<4^{\prime \prime}$, or $\mathrm{E}>1,400,000 \mathrm{psi}$.

Table 11.3.6B Group Action Factors, \mathbf{C}_{g}, for 4" $^{\prime \prime}$ Split Ring or Shear Plate Connectors with Wood Side Members ${ }^{2}$

$\mathbf{s}=9^{\prime \prime}, \mathbf{E}=1,400,000 \mathrm{psi}$												
$\mathrm{As}_{s} / \mathrm{A}_{\mathrm{m}}{ }^{1}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}}{ }^{1} \\ & \text { in. } \end{aligned}$	Number of fasteners in a row										
		2	3	4	5	6	7	8	9	10	11	12
0.5	5	0.90	0.73	0.59	0.48	0.41	0.35	0.31	0.27	0.25	0.22	0.20
	12	0.95	0.83	0.71	0.60	0.52	0.45	0.40	0.36	0.32	0.29	0.27
	20	0.97	0.88	0.78	0.69	0.60	0.53	0.47	0.43	0.39	0.35	0.32
	28	0.97	0.91	0.82	0.74	0.66	0.59	0.53	0.48	0.44	0.40	0.37
	40	0.98	0.93	0.86	0.79	0.72	0.65	0.59	0.54	0.49	0.45	0.42
	64	0.99	0.95	0.91	0.85	0.79	0.73	0.67	0.62	0.58	0.54	0.50
1	5	1.00	0.87	0.72	0.59	0.50	0.43	0.38	0.34	0.30	0.28	0.25
	12	1.00	0.93	0.83	0.72	0.63	0.55	0.48	0.43	0.39	0.36	0.33
	20	1.00	0.95	0.88	0.79	0.71	0.63	0.57	0.51	0.46	0.42	0.39
	28	1.00	0.97	0.91	0.83	0.76	0.69	0.62	0.57	0.52	0.47	0.44
	40	1.00	0.98	0.93	0.87	0.81	0.75	0.69	0.63	0.58	0.54	0.50
	64	1.00	0.98	0.95	0.91	0.87	0.82	0.77	0.72	0.67	0.62	0.58

[^3]
LONGITUDE

ONE TWENTY

ENGINEERING \& DESIGN

SUBJECT
BY \qquad DATE \qquad

Table 11.3.6C Group Action Factors, C_{g}, for Bolt or Lag Screw Connections with Steel Side Plates ${ }^{1}$

For $\mathrm{D}=1^{\prime \prime}, \mathbf{s}=4^{\prime \prime}, \mathbf{E}_{\text {mood }}=1,400,000 \mathrm{psi}, \mathbf{E}_{\text {steel }}=\mathbf{3 0 , 0 0 0}, 000 \mathrm{psi}$												
$\mathrm{A}_{\mathrm{m}} / \mathrm{A}_{\mathrm{s}}$	$\begin{aligned} & \mathbf{A}_{\mathrm{m}} \\ & \mathrm{in}^{2} \end{aligned}$	Number of fasteners in a row										
		2	3	4	5	6	7	8	9	10	11	12
12	5	0.97	0.89	0.80	0.70	0.62	0.55	0.49	0.44	0.40	0.37	0.34
	8	0.98	0.93	0.85	0.77	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	16	0.99	0.96	0.92	0.86	0.80	0.75	0.69	0.64	0.60	0.55	0.52
	24	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.71	0.67	0.63	0.59
	40	1.00	0.98	0.96	0.94	0.90	0.87	0.83	0.79	0.76	0.72	0.69
	64	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.86	0.83	0.80	0.77
	120	1.00	0.99	0.99	0.98	0.96	0.95	0.93	0.91	0.90	0.87	0.85
	200	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90
18	5	0.99	0.93	0.85	0.76	0.68	0.61	0.54	0.49	0.44	0.41	0.37
	8	0.99	0.95	0.90	0.83	0.75	0.69	0.62	0.57	0.52	0.48	0.44
	16	1.00	0.98	0.94	0.90	0.85	0.79	0.74	0.69	0.65	0.60	0.56
	24	1.00	0.98	0.96	0.93	0.89	0.85	0.80	0.76	0.72	0.68	0.64
	40	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.86	0.83	0.81
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.94	0.92
24	40	1.00	0.99	0.97	0.95	0.93	0.89	0.86	0.83	0.79	0.76	0.72
	64	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.88	0.85	0.83	0.80
	120	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.91	0.90	0.88
	200	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.93	0.92
30	40	1.00	0.98	0.96	0.93	0.89	0.85	0.81	0.77	0.73	0.69	0.65
	64	1.00	0.99	0.97	0.95	0.93	0.90	0.87	0.83	0.80	0.77	0.73
	120	1.00	0.99	0.99	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
	200	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.94	0.92	0.90	0.89
35	40	0.99	0.97	0.94	0.91	0.86	0.82	0.77	0.73	0.68	0.64	0.60
	64	1.00	0.98	0.96	0.94	0.91	0.87	0.84	0.80	0.76	0.73	0.69
	120	1.00	0.99	0.98	0.97	0.95	0.92	0.90	0.88	0.85	0.82	0.79
	200	1.00	0.99	0.99	0.98	0.97	0.95	0.94	0.92	0.90	0.88	0.86
42	40	0.99	0.97	0.93	0.88	0.83	0.78	0.73	0.68	0.63	0.59	0.55
	64	0.99	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.72	0.68	0.64
	120	1.00	0.99	0.97	0.95	0.93	0.90	0.88	0.85	0.81	0.78	0.75
	200	1.00	0.99	0.98	0.97	0.96	0.94	0.92	0.90	0.88	0.85	0.83
50	40	0.99	0.96	0.91	0.85	0.79	0.74	0.68	0.63	0.58	0.54	0.51
	64	0.99	0.97	0.94	0.90	0.85	0.81	0.76	0.72	0.67	0.63	0.59
	120	1.00	0.98	0.97	0.94	0.91	0.88	0.85	0.81	0.78	0.74	0.71
	200	1.00	0.99	0.98	0.96	0.95	0.92	0.90	0.87	0.85	0.82	0.79

[^4]
LONGITUDE

ONE TWENTYㅁ

ENGINEERING \& DESIGN

BY
SUBJECT
\qquad DATE \qquad

Table 11.3.6D Group Action Factors, Cg, for 4" Shear Plate Connectors with Steel Side Plates ${ }^{1}$

$\mathbf{s}=9^{\prime \prime}, \mathbf{E}_{\text {wood }}=\mathbf{1 , 4 0 0 , 0 0 0} \mathbf{~ p s i}, \mathbf{E}_{\text {steel }}=\mathbf{3 0 , 0 0 0 , 0 0 0} \mathbf{~ p s i}$												
$\mathrm{A}_{\mathrm{m}} / \mathrm{A}_{\text {s }}$	$\begin{aligned} & \mathrm{A}_{\mathrm{m}} \\ & \mathrm{in}^{2} \end{aligned}$	Number of fasteners in a row										
		2	3	4	5	6	7	8	9	10	11	12
12	5	0.91	0.75	0.60	0.50	0.42	0.36	0.31	0.28	0.25	0.23	0.21
	8	0.94	0.80	0.67	0.56	0.47	0.41	0.36	0.32	0.29	0.26	0.24
	16	0.96	0.87	0.76	0.66	0.58	0.51	0.45	0.40	0.37	0.33	0.31
	24	0.97	0.90	0.82	0.73	0.64	0.57	0.51	0.46	0.42	0.39	0.35
	40	0.98	0.94	0.87	0.80	0.73	0.66	0.60	0.55	0.50	0.46	0.43
	64	0.99	0.96	0.91	0.86	0.80	0.74	0.69	0.63	0.59	0.55	0.51
	120	0.99	0.98	0.95	0.91	0.87	0.83	0.79	0.74	0.70	0.66	0.63
	200	1.00	0.99	0.97	0.95	0.92	0.89	0.85	0.82	0.79	0.75	0.72
18	5	0.97	0.83	0.68	0.56	0.47	0.41	0.36	0.32	0.28	0.26	0.24
	8	0.98	0.87	0.74	0.62	0.53	0.46	0.40	0.36	0.32	0.30	0.27
	16	0.99	0.92	0.82	0.73	0.64	0.56	0.50	0.45	0.41	0.37	0.34
	24	0.99	0.94	0.87	0.78	0.70	0.63	0.57	0.51	0.47	0.43	0.39
	40	0.99	0.96	0.91	0.85	0.78	0.72	0.66	0.60	0.55	0.51	0.47
	64	1.00	0.97	0.94	0.89	0.84	0.79	0.74	0.69	0.64	0.60	0.56
	120	1.00	0.99	0.97	0.94	0.90	0.87	0.83	0.79	0.75	0.71	0.67
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.89	0.86	0.82	0.79	0.76
24	40	1.00	0.96	0.91	0.84	0.77	0.71	0.65	0.59	0.54	0.50	0.46
	64	1.00	0.98	0.94	0.89	0.84	0.78	0.73	0.68	0.63	0.58	0.54
	120	1.00	0.99	0.96	0.94	0.90	0.86	0.82	0.78	0.74	0.70	0.66
	200	1.00	0.99	0.98	0.96	0.94	0.91	0.88	0.85	0.82	0.78	0.75
30	40	0.99	0.93	0.86	0.78	0.70	0.63	0.57	0.52	0.47	0.43	0.40
	64	0.99	0.96	0.90	0.84	0.78	0.71	0.66	0.60	0.56	0.51	0.48
	120	0.99	0.98	0.94	0.90	0.86	0.81	0.76	0.71	0.67	0.63	0.59
	200	1.00	0.98	0.96	0.94	0.91	0.87	0.83	0.79	0.76	0.72	0.68
35	40	0.98	0.91	0.83	0.74	0.66	0.59	0.53	0.48	0.43	0.40	0.36
	64	0.99	0.94	0.88	0.81	0.73	0.67	0.61	0.56	0.51	0.47	0.43
	120	0.99	0.97	0.93	0.88	0.82	0.77	0.72	0.67	0.62	0.58	0.54
	200	1.00	0.98	0.95	0.92	0.88	0.84	0.80	0.76	0.71	0.68	0.64
42	40	0.97	0.88	0.79	0.69	0.61	0.54	0.48	0.43	0.39	0.36	0.33
	64	0.98	0.92	0.84	0.76	0.69	0.62	0.56	0.51	0.46	0.42	0.39
	120	0.99	0.95	0.90	0.85	0.78	0.72	0.67	0.62	0.57	0.53	0.49
	200	0.99	0.97	0.94	0.90	0.85	0.80	0.76	0.71	0.67	0.62	0.59
50	40	0.95	0.86	0.75	0.65	0.56	0.49	0.44	0.39	0.35	0.32	0.30
	64	0.97	0.90	0.81	0.72	0.64	0.57	0.51	0.46	0.42	0.38	0.35
	120	0.98	0.94	0.88	0.81	0.74	0.68	0.62	0.57	0.52	0.48	0.45
	200	0.99	0.96	0.92	0.87	0.82	0.77	0.71	0.66	0.62	0.58	0.54

[^5]\qquad
\qquad
ONE TWENTY゚
\qquad DATE \qquad

$\mathrm{M}=\mathrm{V}^{*} \mathrm{~h}-\mathrm{T}^{*} \mathrm{~d}^{*} 0.707$
Shear (3/4" diam) = 887\#
Withdrawal = 2873\#
T total $=1355 \#$
Therefore:
\[

$$
\begin{aligned}
& \mathrm{V}=\mathrm{T} / 5.66 \\
& \mathrm{~V} \text { Max }-1355 / 5.66= \\
& =239 \mathrm{lbs} / \mathrm{brace}
\end{aligned}
$$
\]

[^0]: 1. Specific gravity, G, based on weight and volume when oven-dry. Different specific gravities, G, are possible for different grades of MSR and MEL lumber
[^1]: Input data and results must be checked for agreement with the existing circumstances, the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W. Las Positas Boulevard Pleasanton, CA 94588 Phone: 925.560.9000 Fax: 925.847 .3871 www.strongtie.com

[^2]: Ledger withdrawal capacity - assuming minimum $11 / 2^{\prime \prime}$ embed (tip discounted) into SS/HF material $=179 \# \times 1.5 \times$ $3=805 \#$ per 16 " of ledger connection (maximum utilized)

[^3]: 1. Where $A_{\sqrt{ }} / A_{m}>1.0$, use A_{m} / A_{s} and use A_{m} instead of A_{s}.
 2. Tabulated group action factors $\left(\mathrm{C}_{\mathrm{B}}\right)$ are conservative for $2-1 / 2^{\prime \prime}$ split ring connectors, $2-5 / 8^{\prime \prime}$ shear plate connectors, $\mathrm{s}<9^{\prime \prime}$, or $\mathrm{E}>$ 1,400,000 psi.
[^4]: 1. Tabulated group action factors $\left(C_{8}\right)$ are conservative for $D<1^{\prime \prime}$ or $s<4^{\prime \prime}$.
[^5]: 1. Tabulated group action factors $\left(C_{8}\right)$ are conservative for $2-5 / 8^{\prime \prime}$ shear plate connectors or $s<9^{\prime \prime}$.
